Self-assessment exercises: Basic programming

March 1, 2022

- 1. Write functions that take a matrix M of size $N \times N$ as an input and calculate the following quantities:
 - The trace of the matrix.
 - The sum, mean and maximum of the entries.
 - The sum, mean and maximum of the absolute value of the entries.
 - A vector of size $N \times 1$ containing the mean of each row.
 - A vector of size $N \times 1$ containing the mean of each column.
 - A matrix of size $N \times N$ containing the result of multiplying M with its transpose.

Note: Write the corresponding code in any language of your choice *without* using built-in functions that can directly give the result wanted in each function. For example, when using MATLAB the function trace(M) calculates the trace of the matrix M and therefore should not be used for this calculation.

- 2. Write a function that takes a matrix M of size $N \times N$ and a real number a as inputs and returns a matrix A of size $N \times N$ where the entry A_{ij} is 1 if $M_{ij} \ge a$ and -1 otherwise.
- 3. Test all the functions using the matrix M of size 20×20 with entries given as

$$M_{ij} = \frac{1}{2}(i-j), \ i, j = 0, ..., 19$$

- 4. Write a program which takes a vector of size $N \times 1$ whose entries are real numbers and sorts it in ascending order. For example, the vector [3, 6, 4, 9] should become [3, 4, 6, 9].
- 5. Write a program which computes prime numbers up to a given maximal number using the iterative algorithm called sieve of Eratosthenes. The iteration starts with the prime number 2 and marks the multiples of 2 as not prime. Then it proceeds to the next larger number, which is not marked and is therefore a prime number. The multiples of it are marked as not prime and so on.