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1. Risk Management & Price
Modeling

Risk management and price modeling is important in the energy industries because
of the volatility of energy products prices. Price volatility can reduce the profit of
business strategies and affect consumers. For this reason managing price risk has
become a necessity in the energy industries to maintain profitability and to avoid a
competitive disadvantage. The use of financial derivatives, both traded in exchanges
and over-the-counter (OTC), has developed as a low cost method of hedging price
risk. A wide variety of derivative contracts exist, including options, forwards and
futures which can be put together to achieve a wide variety of objectives.

Risk is defined as a situation in which a variable is likely to take on a value differing
from that which was expected. Price risk refers to exposure to adverse price moves
in the cash market. A producer or supplier loses if prices move lower in the cash
market. The consumer loses if prices move higher. Basis risk refers to the difference
between the price used as a benchmark in a transaction and the price for the actual
goods changing hands. If the difference between the benchmark price and the actual
price does not remain constant, there will be a loss or a gain on one side of the deal.
Economists and other analysts use a statistical tool, the standard deviation, to
measure risk. The standard deviation measures the spread of possible outcomes
around the average, or expected, value of the variable in question.

Larger values of the standard deviation imply more risk. Although managing price
risk has become a major consideration for energy companies, this doesn’t necessarily
mean using derivatives. Several alternatives to derivatives exist that might accom-
plish similar results. Vertical integration, the incorporation of the various stages of
the production process, from exploration and production to final retail distribution,
into one entity, allows the firm to control price risk. Vertically integrated firms
are able to manage how a change in the price of a primary factor of production is
incorporated into the cost structure of the firm.

Since volatile energy prices are not likely to stabilize in the future, firms must under-
take a strategy to protect themselves from price volatility. The strategy chosen must
be cost effective, flexible, and reliable. Financial derivatives fit these requirements
for many firms in the energy industries

7



Chapter 1 Risk Management & Price Modeling

1.1. Introduction To Energy Derivatives

For many market participants, energy derivatives appear to be a new phenomenon.
Although it is true that traded derivatives are a relatively new concept in the energy
markets, the structures have been around for centuries and contracts with derivative
characteristics have existed in energy markets for decades.

For example, a futures contract on 1000 barrels of light, sweet, crude oil dated July,
2013, at a price of $90 obligates the owner of that contract to purchase oil at that
time, at those terms. In what sense does the futures contract have value? If, near
the settlement date in July 2013, light, sweet crude is selling for $100 per barrel on
the spot market, holding a legally enforceable right to buy the oil at $90 per barrel
creates a value of $10 per barrel for the owner of the futures contract. Conversely,
if oil is available on the spot market for $80 per barrel on the July, 2013 settlement
date, the futures contract is a liability for the contract holder in that it requires the
oil buyer to pay $10 more for oil than the market price.

Derivatives traded on the energy exchanges are liquid1, while OTC contracts gen-
erally are not. A party on either side of an exchange-traded contract can cancel
its position at any time by buying or selling a contract that is opposite its original
contract. For example, if a firm had purchased a futures contract on 1000 barrels of
crude oil it could sell a contract with identical terms which would effectively cancel
the firm’s obligation. From the point of view of the exchange, the firm would have
netted out its position, having bought and sold contracts obligating it to 1000 bar-
rels of oil, leaving it, in effect, out of the market. This type of transaction can be
undertaken at any time because all contracts are standardized and have the central
clearinghouse, which is owned by the market, as counterpart to the contracts. If
the contract were OTC, the only way the contract could be terminated or modified
would be through mutual negotiation and agreement between the principals. A firm
that chose to abrogate an OTC contract it found financially disadvantageous would
likely have to pay penalties to the counterpart, who would suffer damages. If the
terms of an OTC contract are such that one of the principals to the agreement is
suffering large losses, that party might not be able to meet the terms of the agree-
ment, raising the possibility of default. The costs of default can be substantial and
are very real since OTC contracts are legally enforceable contracts.

Trades on organized exchanges are anonymously, cost efficiently, and competitively
implemented with instantaneous price transparency. This is helpful to traders who
might want to put a business strategy in place cheaply, quickly, and without reveal-
ing their strategy to other market participants. OTC contracts are, in effect, the
opposite. Since they are one-on-one arrangements, the principals to the agreement
are closely related to one another.

1Market liquidity is an asset’s ability to be sold without causing a significant movement in the
price and with minimum loss of value.
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1.1 Introduction To Energy Derivatives

Figure 1.1.: The setting of a typical trading floor schematically depicted. Left-side
figure shows the typical products on the trading floor. Right-side figure displays
who is the problem owner and where does it fit in.

1.1.1. Derivatives Contract Types

There are three main derivatives contract types.
1. Options. An option contract gives the owner the right, but not the obligation,

to buy or sell quantities of the underlying asset at a fixed price known as the
strike price. Option based strategies allow the owner to participate in favorable
outcomes while minimizing the effect of negative outcomes. Offsetting this
favorable result, an options based strategy is more expensive than futures
based strategies.

2. Futures. A future contract is a contractual agreement, generally made on the
trading floor of a futures exchange, to buy or sell a particular commodity or
financial instrument at a pre-determined price in the future. Futures contracts
detail the quality and quantity of the underlying asset; they are standardized
to facilitate trading on a futures exchange. Some futures contracts may call
for physical delivery of the asset, while others are settled in cash. One of the
main attractions of futures contracts is the virtual elimination of counterpart
credit risk, because the financial performance and commodity delivery are
guaranteed by the exchange. Another frequently mentioned benefit of futures
is the reduction of transaction costs due to contract standardization. Finally,
because they are settled daily, computing the mark-to-market2 (MTM) value
of futures contracts does not require discounting, making them much simpler
to evaluate than their close cousins: forwards

3. Forwards. A forward contract is a cash market transaction (cash-and-carry
agreement) in which delivery of the commodity is deferred until after the
contract has been made. Although the delivery is made in the future, the
price is determined on the initial trade date. Unlike exchange-traded futures,

2Mark-to-market valuation refers to accounting for the “fair value” of an asset or liability based
on the current market price.
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Chapter 1 Risk Management & Price Modeling

forward contracts are over-the-counter (OTC) products. They need not be
standardized, and they can be structured in the way most convenient to the
counterparties. This flexibility is one of the reasons why forward contracts are
currently more popular than futures. Furthermore forward contracts, unlike
futures, are not settled daily. On the positive side, this means that a contract
holder does not have to worry about having daily access to cash to satisfy
margin requirements. On the negative side, if the market moves in the right
direction (i.e., the contract ends up being in-the-money (ITM)), the contract
holder becomes exposed to counterpart credit risk. A call option is ITM, when
the option’s strike price is below the market price of the underlying asset. A
put option is ITM, when the strike price is above the market price of the
underlying asset. Being ITM does not mean you will profit, it just means the
option is worth exercising. This is because the option costs money to buy.

1.2. Definition of Long and Short Position

By going long a call, the option holder has the rights to buy the underlying at
the strike price before or on expiry date. The maximum risk to this buyer, if he
goes long one option contract is the option premium. The maximum profit he can
make is unlimited and is derived from the difference between the market rate of
the underlying at the time of exercise and the strike price minus the premium. By
going short a call, one is basically writing with intent to sell it in the open market of
course. The option seller has the obligation to sell the underlying at the strike price
if the option holder exercises the option. The maximum risk for the option seller
is unlimited and is derived from the difference between the current market price of
the underlying at assignment and the strike price minus the option premium. The
maximum profit the option seller can reap is the premium.

By going long a put, the option holder has the right to sell the underlying at the
strike price before or on the expiry date. The maximum risk to the buyer is the
premium as like the long call trade. The maximum profit is unlimited and is the
difference between the strike price and the market price of the underlying when the
option is exercised. By shorting a put, the option seller writes a put option and has
the obligation to buy the underlying at strike price if the option holder exercises
his put option. The maximum risk for the option seller is unlimited and is derived
from the difference between the strike price and the market price of the underlying
at assignment minue the premium. The maximum profit for the option seller is the
premium.

10



1.3 Principles Of Hedging And Price Discovery

1.3. Principles Of Hedging And Price Discovery

An important application of derivatives is hedging. Hedging means to eliminate or
limit risks. For example, consider a trader who holds (is “long”) a call option of
Light Sweet Crude Oil - WTI (1,000 barrels) and wants protection against a possible
decline of the price below a value K in the next three months. The trader could
buy put options on this stock with strike K and a maturity that matches his three
months time horizon. Since the trader can exercise his puts when the share price falls
below K, it is guaranteed that the stock can be sold at least for the price K during
the life time of the option. With this strategy the value of the stock is protected.
The premium paid when purchasing the put option plays the role of an insurance
premium. — Hedging is intrinsic for calls. The writer of a call must hedge his
position to avoid being hit by rising asset prices.The principle behind establishing
equal and opposite positions in the cash and futures or options markets is that a
loss in one market should be offset by a gain in the other market.

1.3.1. Fair Value

What would be the fair price of the forward contract if we did not or could not
hedge? Clearly, it would be an expectation at time t of the forward spot prices ST .

Fvalue = Et(ST ) = S0e
rt (1.3.1)

or in the case that we have also a storage cost U (e.g. storage cost of natural gas)
the fair value will be given by

Fvalue = Et(ST ) = (S0 + U)ert (1.3.2)

where U is the the storage cost of the commodity at t = 0 and over the life of a
forward contract. If some or all of the cost is not spent at t = 0 then this future
cost should be discounted at the risk-free rate.
What kind of principle is so powerful to serve as basis for a fair valuation of deriva-
tives? The concept is arbitrage, or rather the assumption that arbitrage is not
possible in an idealized market. Arbitrage means the existence of a portfolio, which
requires no investment initially, and which with guarantee makes no loss but very
likely a gain at maturity. Or shorter: arbitrage is a self-financing trading strategy
with zero initial value and positive terminal value.
If an arbitrage profit becomes known, arbitrageurs will take advantage and try to
lock in. This makes the arbitrage profits shrink. In an idealized market, informations
spread rapidly and arbitrage opportunites become apparent. So arbitrage cannot last
for long. Hence, in efficient markets at most very small arbitrage opportunities are
observed in practice. For the modeling of financial markets this leads to postulate the

11



Chapter 1 Risk Management & Price Modeling

Figure 1.2.: The fair value of a forward contract as function of time to maturity
(up) without and (down) with two different types of storage cost. S0 = 50, T = 2
years and storage cost U = 1

no-arbitrage principle: One assumes an idealized market such that arbitrage is ruled
out [see 3.1]. Arguments based on the no-arbitrage principle resemble indirect proofs
in mathematics: Suppose a certain financial situation. If this assumed scenario
enables constructing an arbitrage opportunity, then there is a conflict to the no-
arbitrage principle. Consequently, the assumed scenario is impossible in practice.

12



2. Standard Energy Options

Standard energy options, such as calls and puts, are some of the most frequently
used risk management tools. The literature on options is quite extensive (e.g., see
McMillan, 1992; Hull, 1999; Cox and Rubinstein, 1985). Therefore, we are not going
to spend much time on their analysis. We remind the reader that in energy markets
a call option is the right, but not the obligation, to buy energy at a predetermined
strike price, and a put option is the right, but not the obligation, to sell energy at a
predetermined strike price. European-style options are exercised only once, at the
specified exercise day, while American options can be exercised any time before the
exercise date.
Thus, by definition, there is not much difference between calls and puts in energy
markets and calls and puts in all other markets. What sets them apart is an unusual
diversity of traded energy options, a natural consequence of the diversity in the
underlying commodity, especially power. Typically, energy option specifications
include:

• Location
• Exercise time
• Delivery conditions, for example, in the case of power, the type of delivered

power (on-peak, off-peak, round-the-clock)
• Strike ( exercise price)
• Volume

2.1. Energy Options Classes

2.1.1. Financially Settled Options

For options to be settled financially, there must be a widely accepted financial index
against which the options are exercised. In the gas market the financial settlement
of gas options is common.
The payoff of a financially settled European call and put on energy is not different
from any other financially settled call and put. If K is the strike price, and S is the
price of the index against which the option is settled, the call’s and put’s pay-off is
given by

13



Chapter 2 Standard Energy Options

C(T ) = max(0, ST −K) = (ST −K)+,
P (T ) = max(0, K − ST ) = (K − ST )+.

(2.1.1)

2.1.2. Physically Settled Options

Physical settlement is particularly relevant for power options, since the power mar-
kets have not yet developed a solid financial index for financial settlement.

Consider, for example, a monthly call option. Physical settlement means that the
option holder has the right, but not the obligation, to buy, paying the strike price
K, the commodity for the period of one month. Buying the commodity is only the
first step in extracting the value from the option. To realize the option payoff, the
option owner must now sell the commodity at the spot market. The option is then
effectively an option on the average spot price inside the contractual month.

We can try to proxy for this average in two ways. In one approach we use a conver-
gence argument and represent the average spot price as a value to which monthly
forward prices converge at expiration. The advantage of this approach is that for-
ward prices in most energy markets are quoted and reliable. The disadvantage of
this approach is that the time-basis between the settlement of the forward price (at
the beginning of the contract month) and the time the average settles (end of the
contract month) can be very significant in power markets (as high as 40 €/MWh).
This disqualifies the use of forward prices as a proxy in power option pricing. Inci-
dentally, for forward contract pricing, whether settled physically or financially, the
use of the forward price is not a problem as the forward price at expiration and the
average spot price are statistically (on average) equal. However, for option pricing
statistical equality is not enough. The above consideration is very important for
power markets. In natural gas markets, the use of forward prices as a proxy for
value seems to work well.

In the second approach, we use an average of daily spot prices over the delivery
month. Again, the daily spot prices are rather transparent in most markets. This
approach corresponds to taking the commodity into the month and trading it on a
daily basis at daily spot prices. The justification for this approach is based on the
assumption that the monthly average of daily prices should be close to the monthly
spot index (in natural gas markets). In reality, the average of daily prices is a
random variable. Its relation to another random variable, the monthly spot index,
and their joint behavior must be thoroughly studied and properly modeled.

Once we have chosen the method of representing the price S at which we can sell the
commodity at the spot market, the option payoff is the same as for the financially
settled options.

14



2.2 Spread Options

2.1.3. Daily and Index or Cash Option

These is another popular group of options—options on the spot commodity. A daily
option is exercised every day during the exercise month. It allows its owner to make
daily decisions during the exercise month about buying (call option) or selling (put
option) spot gas or power at a fixed strike price. In index or cash option, the option
is exercised every day during the exercise month with a specified monthly index as
a strike price. It allows its owner to make daily decisions during the exercise month
about buying (call option) or selling (put option) spot gas or power at a strike price
determined at the beginning of the month as a settled value of the monthly index.
Options on the spot commodity are very common among energy derivatives, because
they answer the real need to manage price risks on a daily basis. They are typically
structured as a strip of options exercised daily during a certain time period (month,
quarter, season, and so on). Therefore, their payoffs can be represented as

Cdaily =
n∑

i = 1
max(0, ST −K) =

n∑
i = 1

(ST −K)+

Pdaily =
n∑

i = 1
max(0, K − ST ) =

n∑
i = 1

(K − ST )+

(2.1.2)

with n the days of the exercised period.
Daily and especially cash options in energy markets have a very different character
from similar option structures in financial markets. They are not derivative products
as such, since the underlying of those options is not traded directly. This is especially
pertinent in power markets where the spot commodity itself does not exist and unlike
other markets power purchased on one day cannot be resold on another.
Gas options are typically financially settled against a specified financial spot price
index, such as the Gas Daily Index. Power daily options are typically physically
settled and therefore the variable S in the above payoffs represents the spot price in
the physical power markets.

2.2. Spread Options

The significance of spread options in the energy markets is very big. Practically
every energy asset and every structured deal has a spread option embedded in it.
Typically, it is a call or a put option with the exception that the underlying is now
a two-commodity portfolio, instead of a single contract

C = max[0, (Spower − Sfuel)−K) = [(Spower − Sfuel)−K]+,
P = max[0, K − (Spower − Sfuel)) = [K − (Spower − Sfuel)]+.

(2.2.1)

15



Chapter 2 Standard Energy Options

As a trading tool, they are used to stabilize operational cash flows, to mitigate
geographical and calendar risks, and to arbitrage market inefficiencies.

2.2.1. Spark Spread

Spark spread is the difference between the price of electricity (output) and the prices
of its primary fuels (inputs). Primary fuels are natural gas, coal, residual fuel oil,
and uranium. The spark spread between electricity and natural gas is the most
common. Spark spreads are traded over-the-counter (OTC).
The spark spread can be used to financially replicate the physical reality of a power
plant to replicate a short position in fuels and a long position in electricity. Power
plants can be considered as European call options

2.3. Strategies With Options

Traders often combine long and short options with different strike price in order to
create option strategies:

• Straddle: this strategy is used when a high volatility is expected on the price
of the underlying but no directional information is available, i.e. it is unknown
whether it will be an upside or a downside volatility. The components are just
a put and a call with the same strike price.

• Strangle: a major movement is expected with uncertainty on the direction.
The components are a long put with strike K1 and a long call with a strike
price K2 , with K1 < K2 .

• Butterfly: is used when it is expected that the price of the underlying will
remain in the vicinity of K2 . The components are: a long call with strike
K1, two short calls with strike K2 and one long call with strikeK3 , with
K1 < K2 < K3.

• Condor: similar to a butterfly but with a wider range which allows to contain
slightly higher volatilities than the butterfly. The components of the condor
are: long call with strike K1 , short call with strike K2 , short call with strike
K3 and a long call with strike K4 , with K1 < K2 < K3 < K4.

16
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3. Modeling Tools for Option Pricing

3.1. Main Assumption: No Arbitrage

The assumption that there is no arbitrage is used in quantitative finance to calculate
a unique risk neutral price for derivatives. When the actual futures price does not
equal the theoretical futures price, arbitrage profits may be made.
Consider an asset price St. Suppose we divide the time period [t, T] into small
intervals of equal size ∆. For each time t + i∆ with i = 1, . . . , n we observe a
different St+i∆. The St+∆ − S − t is the change in asset price at time t. Choose a
working probability from all available synthetic probabilities, and denote it by P∗.
Then, we can always calculate the expected value of this change under this proba-
bility. In the case of P∗ =

∼
P, we obtain the risk-neutral expected net return by

E
∼
P
t [St+∆ − St] = rtSt∆. (3.1.1)

Now we can use the probability switching method and exploit the Martingale prop-
erty [1]. For example, for the risk-neutral probability we have

[St+∆ − St] = rtSt∆ + εt. (3.1.2)

Now the error term εt can be written in the equivalent form

εt = σ(St)St∆Wt, (3.1.3)

where ∆Wt is a Wiener process increment with variance equal to ∆. Thus, the
arbitrage-free dynamics under the

∼
P measure can be written as

[St+∆ − St] = rtSt∆ + σ(St)St∆Wt (3.1.4)

Letting ∆→ 0 , this equation becomes a stochastic differential equation (SDE), that
represents the arbitrage-free dynamics under the synthetic probability,

∼
P, during an

infinitesimally short period dt. Symbolically, the SDE is written as

dSt = rtStdt+ σtStdWt (3.1.5)

19



Chapter 3 Modeling Tools for Option Pricing

The dSt and dWt represent changes in the relevant variables during an infinitesimal
time interval. Given the values for the (percentage) volatility parameter,σ(St), these
equations can be used to generate arbitrage-free trajectories for the St.

3.2. Option Pricing Models

The classical Black-Scholes equation to price an option on an asset is given by [BS73]

∂V

∂t
+ ∂V

∂S
rSt + 1

2
∂2V

∂S2 σ
2S2

t = rV, (3.2.1)

with t ∈ [0,∞) and S ∈ [0, Smax]. The Black-Scholes (BS) equation can be derived
by several different approaches [FRouah] [Seydel].
It is well known that the Black-Scholes assumptions are not very realistic. A known
issue with the Black-Scholes model is the appearance of a smile in the implied
option’s volatility. In particular for a given expiration, options whose strike price
differs substantially from the underlying asset’s price commands higher prices (and
thus implied volatilities) than what is suggested by standard option pricing models.
But yet, the Black-Scholes formula is routinely used by options traders, although
these traders know better than anybody else that the assumptions behind the model
are problematic. So, how can a trader still use the Black-Scholes formula if the
realized volatility is known to fluctuate significantly during the life of the option?
This question needs to be carefully considered. In the end, we will see that there
really are no inconsistencies in traders’ behavior. We can explain this as follows:

1. First, note that the Black-Scholes formula is simple and depends on a small
number of parameters. In fact, the only major parameter that it depends
on is the volatility, σ. A simple formula has some advantages. It is easy to
understand and remember. But, more importantly, it is also easy to realize
where or when it may go wrong. A simple formula permits developing ways to
correct for any inaccuraciesinformallyby making subjective adjustments during
trading.

2. An important aspect of the Black-Scholes formula is that it has become a
convention. In other words, it has become a standard among professionals
and also in computer platforms. The formula provides a way to connect a
volatility quote to a dollar value attached to this quote. This way traders
use the same formula to put a dollar value on a volatility number quoted
by the market. This helps in developing common platforms for hedging, risk
managing, and trading volatility.

3. Thus, once we accept that the use of the Black-Scholes formula amounts to
a convention, and that traders differ in their selection of the value of the
parameter σ, then the critical process is no longer the option price, but the
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volatility. This is one reason why in many markets, such as caps, floors, and
swaptions markets, the volatility is quoted directly.

One way to account for the imperfections of the Black-Scholes assumptions would
be for traders to adjust the volatility parameter. However, the convention creates
new risks. Once the underlying is the volatility process, another issue emerges. For
example, traders could add arisk premiumto quoted volatilities. Just like the risk
premium contained in asset prices, the quotes on volatility may incorporate a risk
premium.

The volatility smile and its generalization, the volatility surface, could then contain
a great deal of information concerning the implied volatilities and any arbitrage
relations between them. Trading, pricing, hedging, and arbitraging of the smile
thus become important.

An alternative to addressing the implied volatility smile or smirk is the family of
stochastic volatility models in which the volatility is itself driven by a second stochas-
tic differential equation (higher-dimensional models1). Along the line, Heston (1993)
proposed a mean-reverting square root variance process that is correlated with the
stock movement. A major advantage of the Heston2 model is that semianalytical
equations for the option value are available via Fourier inversion of a characteristic
function of the Heston process.

3.2.1. The Black-Scholes Model

3.2.1.1. Derivation of the Black-Scholes Equation

The derivation of the basic Black-Scholes options pricing equation follows from im-
posing the condition that a riskless portfolio made up of stock and options must
return the same interest rate as other riskless assets, assuming stock and options
prices are in a market equilibrium. The portfolio will have an options component
and a variable quantity of stock so that it remains riskless at all positive stock prices.
That leads to a relationship between the option price. The derivation takes a fixed
risk-free interest rate r and the stock’s volatility σ to be known constants through
time T when any options will expire. It is assumed that there are no transactions
costs or constraints, no taxes, no dividends, and no liquidity constraints. Trading in
securities is in continuous units and instantaneous; price changes are completely un-
affected by the trader under consideration. It is assumed that no risk-free arbitrage
opportunities exist.

1Except from Heston model there are several other models like Hull-White Model. The crucial
difference between the Heston model and the Hull-White model is the assumption of nonzero
correlation between the price and volatility process.

2The model’s popularity arises less from its empirical performance and more from its relative
tractability.
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Assume asset price evolve according to the stochastic process called geometric Brow-
nian motion.

dSt = µdt+ σdWt, t ∈ [0,∞) (3.2.2)

Where µ is the drift term, σ the volatility and both are constants. The lognormal
evolution follows

S(t) = S0exp((µ−
σ2

2 )t+ σdWt) = S0exp((µ−
σ2

2 )t+ σε
√
T ) (3.2.3)

Substituting the risk-neutral lognormal asset price path into the expectation in
results in the integrated expectation as given by

c = e−rTET [max(ST −K, 0)], (3.2.4)

c = e−rT
ˆ ∞
−∞

max(0, S0exp((µ−
σ2

2 )t+ σε
√
T )−K) 1√

2π
e
−ε2/2dε, (3.2.5)

where ε is normally distributed. The max term is eliminated by integrating only
over the limits that yield a positive value

S0e
(r−σ2/2)T+σε

√
T −K ≥ 0, (3.2.6)

which occurs when [Din2005]

ε1 ≥
1

σ
√
T

[
ln
(
K

S0

)
−
(
r − σ2

2

)
T

]
. (3.2.7)

Changing to the releveant limits of integration gives

c = e−rT√
2π

ˆ ∞
ε1

(
S0e

(r−σ2/2)T+σε
√
T −K

)
e
−ε2/2dε. (3.2.8)

Splitting the integral allows the elimination of r from the first term

c = S0√
2π

ˆ ∞
ε1

(
e
−ε2/2+σε

√
T−(σ2/2)T

)
dε− Ke−rT√

2π

ˆ ∞
ε1

e
−ε2/2dε. (3.2.9)

The exponential in the first term is simplified as square

c = S0
1√
2π

ˆ ∞
ε1

e−
1
2(ε−σ√T)2

dε−Ke−rT 1√
2π

ˆ ∞
ε1

e−
ε2
2 dε. (3.2.10)
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The integral of a normal probability distribution in the cumulative normal distribu-
tion function,

Φ(x1) =
ˆ x1

−∞
e
−x2/2dx = 1−

ˆ ∞
x1

e
−x2/2dx = 1− Φ(−x1), (3.2.11)

which is used to simplify the valuation equation to

c = S0
[
1− Φ(ε− σ

√
T )
]
−Ke−rT [1− Φ(ε)] (3.2.12)

The distribution can be rewritten by the property Φ(x1) = 1− Φ(−x1) as

1− Φ(ε− σ
√
T ) = Φ(−ε+ σ

√
T ) = Φ

{
1

σ
√
T

[
ln
(
S0

K

)
−
(
r + σ2

2

)
T

]}
(3.2.13)

This form is the standard Black-Scholes equation for a European Call option

c = Soe
−qTΦ(d1)− e−rTKΦ(d2), (3.2.14)

d1 = 1
σ
√
T

[
ln
(
S0

K

)
−
(
r − q + σ2

2

)
T

]
, (3.2.15)

d2 = 1
σ
√
T

[
ln
(
S0

K

)
−
(
r − q − σ2

2

)
T

]
= d1 − σ

√
T . (3.2.16)

The Black-Scholes equation for a European Put option is

p = −Soe−qTΦ(−d1) + e−rTKΦ(−d2), (3.2.17)

with a dividend yield q. The same equations can be found from no-arbitrage argu-
ments.

3.2.1.2. Black-Scholes Differential Equation

We start again from the SDE of the geometric Brownian motion

dSt = µdt+ σdWt (3.2.18)

We will assume that the underlying randomness in the option price is the same
source for the volatility in the stock price randomness [bemis2006]. The risk-free
portfolio has a total value given by
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Πt = −ft,T + ∂ft,T
∂S

St (3.2.19)

As changes in the stock price are linked to changes in the option contract price, the
change in portfolio value at time t over a short time period is written as

∆Πt = −∆ft,T + ∂ft,T
∂S

St (3.2.20)

A perfectly hedged portfolio will earn the risk-free rate r

∆Πt = rΠt∆t = r(−ft,T + ∂ft,T
∂S

∂St) (3.2.21)

Ito’s lemma [Appendix A.1] allows us to define the instantaneous price change of
the option price that is a function of asset price and time as

df = ∂f

∂S
dS + ∂f

∂t
dt+ 1

2
∂2f

∂S2 (dS)2 (3.2.22)

Substituting the spot price change model gives

df = ∂f

∂S
(µStdt+ σStdWt) + ∂f

∂t
dt+ 1

2
∂2f

∂S2

(
σ2S2

t dW
2
)

(3.2.23)

df =
(
∂f

∂S
µSt + ∂f

∂t
+ 1

2
∂2f

∂S2σ
2S2

t

)
dt+ ∂f

∂S
σStdW (3.2.24)

with the discrete version of the price change of the option price

∆f =
(
∂f

∂S
µSt + ∂f

∂t
+ 1

2
∂2f

∂S2σ
2S2

t

)
∆t+ ∂f

∂S
σSt∆W (3.2.25)

The geometric Brownian process has a standard deviation of 1/√years . This allows
to be expressed (dW )2 = dt and (∆W )2 = ∆t .

∆Πt = −∆ft,T + ∂ft,T
∂S

St = −
{(

∂f

∂S
µSt + ∂f

∂t
+ 1

2
∂2f

∂S2σ
2S2

t

)
∆t+ ∂f

∂S
σSt∆W

}

+ ∂f

∂S

∂f

∂S
(µStdt+ σSt∆Wt =⇒ ∆Πt =

(
−∂f
∂t
− 1

2
∂2f

∂S2σ
2S2

t

)
∆t

Equating the risk-free growth of our portfolio to the change in value of our hedged
portfolio
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∆Πt = rΠt∆t =⇒
(
−∂f
∂t
− 1

2
∂2f

∂S2σ
2S2

t

)
∆t = r

(
−f + ∂f

∂S
St

)
∆t (3.2.26)

gives the Black-Scholes differential equation (inserting a dividend rate q) for the
evolution of the option price

∂f

∂t
+ ∂f

∂S
(r − q)St + 1

2
∂2f

∂S2σ
2S2

t = rf (3.2.27)

3.2.1.3. Black-Scholes Option Greeks from Derived Formula

The term Greeks are the quantities representing the sensitivities of the price of
derivatives such as options to a change in underlying parameters on which the value
of an instrument or portfolio is dependent. Collectively these have also been called
the risk sensitivities, risk measures or hedge parameters.
The Greeks in the Black–Scholes model are relatively easy to calculate and are very
useful for derivatives traders, especially those who seek to hedge their portfolios
from adverse changes in market conditions. The most common of the Greeks are
the first order derivatives: Delta, V ega and Theta as well as Gamma, a second-order
derivatives of the value function.

Delta Delta measures the rate of change of option value with respect to changes
in the underlying asset’s price. Delta is the first derivative of the value of the option
with respect to the underlying instrument’s price [Appendix A.2]

∆call = ∂c

∂S
= e−qTΦ(n)(d1) (3.2.28)

∆put = ∂p

∂S
= e−qTΦ(n)(−d1) = e−qT

[
Φ(n)(d1)− 1

]
(3.2.29)

Vega V ega measures sensitivity to volatility. Vega is the derivative of the option
value with respect to the volatility of the underlying asset.

νcall = ∂c

∂σ
= S0e

−qTφ(n)(d1)
√
T (3.2.30)

νput = ∂p

∂σ
= Ke−qTφ(n)(d2)

√
T (3.2.31)

where φ is the probability density function (PDF ).
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Theta Theta measures the sensitivity of the value of the derivative to the passage
of time or “time decay”.

θcall = ∂c

∂t
= −S0e

−rT φ
(n)(d1)σ
2
√
T
− rKe−rTΦ(n)(d2) + qS0e

−qTΦ(n)(d1) (3.2.32)

θput = ∂p

∂t
= −S0e

−rT φ
(n)(d1)σ
2
√
T

+ rKe−rTΦ(n)(−d2)− qS0e
−qTΦ(n)(−d1) (3.2.33)

Gamma Gamma measures the rate of change in the delta with respect to changes
in the underlying price. Gamma is the second derivative of the value function with
respect to the underlying price.

Γcall = Γput →
∂2c

∂S2 = ∂2p

∂S2 = ∂∆
∂S
→ e−qT

φ(n)(d1)
S0σ
√
T

(3.2.34)

The Black− Scholes differential equation for the evolution of the option price V is

∂V

∂t
+ rSt

∂V

∂S
+ 1

2σ
2S2

t

∂2V

∂S2 − rV = 0 (3.2.35)

and can be rewritten with the option Greeks

θ + rSt∆ + 1
2σ

2S2
t Γ = rV (3.2.36)

3.2.1.4. Hedging with Option Greeks in the Black-Scholes Framework

Hedging is the practice of taking a position in one market to offset and balance
against the risk adopted by assuming a position in a contrary or other market or
investment.
Option pricing and hedging theory are the core of modern mathematical finance
since the derivation of the Black-Scholes formula, which provides a theoretical value
and hedging strategy for European call/put options. Hedging with options is very
common in energy applications simply because options are frequently the only in-
strument to address risk management needs. The key is that exists a trading strategy
which constructs a portfolio that perfectly replicates the payoff of a call (or put)
option under the following two assumptions

• The underlying risky asset price follows a geometric Brownian motion, and
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Figure 3.1.: Value of a call option depending to the asset price and time to expi-
ration τ = T − t. Monitoring of the standard Greeks depending also to τ .

• trading may take place in continuous time.
However, continues trading is never possible or even reasonable due to transactions
costs (bid-ask spread, slippage, broker fees) and there always exist a hedging error
i.e. perfect replication is not possible.

Dynamic Delta Hedging Delta neutral hedging is a strategy that aims to reduce
(hedge) the risk associated with price movements in the underlying asset by offsetting
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long and short positions and set the value of ∆ w 0 3. This strategy is based on
the change in premium (price of option) caused by a change in the price of the
underlying security. The change in premium for each basis-point change in price of
the underlying is the delta and the relationship between the two movements is the
hedge ratio.
For example, assume a portfolio which consists of a number of risk-free assets and
a number of risky assets. Also, assume that we include a short4 (sell) position in
a European call option, C, with strike price K and exercise time T . Furthermore
suppose that we have charged the arbitrage free price

Π0[X] = e−rTEQ[X] = C(S0, K, σ, T ) (3.2.37)

where Q denotes the unique martingale measure (arbitrage-free) for the Black-
Scholes model. In mathematical finance, an martingale measure is a risk-neutral
measure and is heavily used in the pricing of financial derivatives due to the funda-
mental theorem of asset pricing, which implies that in a complete market a deriva-
tive’s price is the discounted expected value of the future payoff under the unique
risk-neutral measure [Holton2005].
In general when we short a call option we must be careful because the maximum
loss is unlimited as the market rises and the maximum gain limited to the premium
received for selling the option. We should use it when we are bearish5 on market
direction and also bearish on market volatility.
Now we would like to Delta-hedge this short position6 in the call option, but due to
restricted market access we can only rebalance our portfolio at the following discrete
points in time: t0 = 0, t1, ...., tn−1 where tj = jT/n . This procedure is called as
we described previously dynamic hedging. Suppose that our portfolio at time tj
consists of a number of risk-free assets and a number of risky assets. The value
process for the hedge portfolio is then given by

V (tj) = h0(tj)A(tj) + h1(tj)S(tj), (3.2.38)

where h0(tj) is the number of risk-free assets (e.g. amount of money invested in a
bond or in a bank account with rate the risk-free rate) and h1(tj) is the amount of
units of the risky asset. Since we have also sold a call option, C, the value of our
total portfolio is given by

3For example, a long call position may be delta hedged by shorting the underlying stock.
4A short is also known as a Naked Call. Naked calls are considered very risky positions because
your risk is unlimited.

5Believing that a particular security, a sector, or the overall market is about to fall.
6Naked calls are tricky - if we take a substantial loss on a naked call option we will seriously
evaluate our view on the stock. If we have a strong view on the stock making a bearish run we
could buy put options to hedge our position or we could simply close out our naked call option
by buying the same amount of call options.
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Π(tj) = V (tj)− C(tj, S(tj)) = h0(t)A(tj) + h1(tj)S(tj)− C(tj, S(tj)). (3.2.39)

Here C(t, S) denotes the pricing function for a European call option (i.e the pre-
mium). If we could rebalance7 our portfolio continuously we would obtain a perfect
hedge if we always had h1(t) = ∆X(t) = ∂C

∂S
stocks in our portfolio. This cannot be

done due to market restrictions. Requiring the total portfolio to be Delta neutral
gives the following equation to solve for h1(tj)

∆Π(tj) = ∂Π
∂S

= ∂

∂S
(h0(t)A(tj)+h1(tj)S−C(tj, S)) = h1(tj)−∆C(tj) = 0. (3.2.40)

Using this strategy we will not be able to replicate the contract perfectly, and there-
fore there will be a hedging error

As the price of the underlying asset drops, the Delta of the call follows suit. We are
therefore selling our holdings gradually, recovering some funds for our bank account
balance. Eventually the price recovers and we build up asset holding once more.
The Delta value will mimic the process of the call option to a large extent, but not
exactly.
Now we are interested in the distribution of the hedging error, i.e. the distribution
of

ΠT = V (T )− C, (3.2.41)

where ΠT is the value of the total portfolio at time T , V (T ) is the value of the delta
hedge portfolio at time T , and C is the value of the call option at time T .
Increasing the frequency of trades will decrease the volatility of this hedging error,
and of course at the limit case the replicating strategy is exact. If from one trans-
action to the next the Delta does not move a lot, we would expect the impact of
discrete hedging to be small. On the other hand, the impact will be most severe in
the areas where the Delta itself changes rapidly. These effects summarized to the
second order sensitivity with respect to the price, the Gamma.

Value at Risk (VaR) In risk management, it is of great importance to have a
coherent and widely recognized measure to assess financial market risk. The Value
at Risk (VaR) framework intends to fulfill this need. It was first introduced in 1989

7There is one very strong argument against becoming a rebalancing addict, and that is cost. We
assumed all distributions were reinvested along the way and did not factor in transaction fees
or taxes on realized gains from trades. But these are both very important issues to consider
when thinking about a rebalancing strategy.
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Figure 3.2.: Dynamic Delta hedging in a simulated Black-Scholes enviroment. We
can see the evaluation of the portfolio’s delta and our cashflow (e.g. bank account)
depenting to τ .

by J.P. Morgan to have a concise view of the risks of the firm. The aim of the VaR
is to have a single figure that gives an immediate and understandable overview of
the risk of a certain financial instrument. In the 90s, the VaR quickly established
itself as a benchmark in the financial industry, [Jorion2001], [McNeil2005].

The Value at Risk (VaR) is defined as the α quantile of a return distribution and gives
an indication of the loss threshold at an α-level one should expect when investing in
a certain instrument or portfolio over a pre-defined time horizon. Typically, 1−α is
chosen to be either 1− α = 95% or 1− α = 99%. Hence, in the case of the V aR95%
, 1 − α = 95% of the returns for the considered period should be above the value
and α = 5% below.
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When computing the daily VaR, one needs to forecast the return distribution for the
next day. Several approaches exist. Among them it is worthwhile to cite the histori-
cal method, GARCH models [Engle1982], Monte-Carlo simulation [Glasserman2000]
or multi-fractals [Boisbourdain2008].

Figure 3.3.: Monte-Carlo simulation of Delta hedging error and V aR95% (green
line). Number of simulated paths N = 1000 and K = 100, T = 1, r = 0.03
and σ = 0.3. In the above figure, we can observe that as the rebalances of our
portfolio are increased the delta hedging error decreases. In an ideal world that
the rebalances →∞, the hedging error → 0.

Gamma (Neutral) Hedging The Γ(Gamma) describes how sensitive is ∆ to small
changes in S. To obtain an even smaller hedging error, one can use a Gamma hedge
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strategy. This makes the portfolio both Delta and Gamma neutral, i.e.

ΓΠ = ∂2Π
∂S2 = 0, ∆Π = ∂Π

∂S
= 0. (3.2.42)

This can be done by allowing the portfolio to contain one more asset. Assume that
this asset is a European call, C2, like the one we’re trying to hedge (C1), only this
one has a different time to maturity. So now we introduce a third portfolio process,
h2(tj), that symbolizes the number of shares held in this contract. The conditions
on ΓΠ and ∆Π impose the following conditions on the portfolio:

h2(tj) = ΓC1(tj)/ΓC2(tj)
h1(tj) = ∆C1(tj)− h2(tj)∆C2(tj)

(3.2.43)

So now we have the following value process

h0(tj)A(tj) + h1(tj)S(tj) + h2(tj)V (tj, C2) =
= h0(tj+1)A(tj) + h1(tj+1)S(tj) + h2(tj+1)V (tj, C2) (3.2.44)

where V (tj, C2) denotes the time tj value of the claim C2.

Vega (volatility) hedging Vega (volatility)8 hedging adjust the volatility exposure.
Under the assumption of the Black-Scholes model, Vega hedging is not necessary
because σ does not change. But this assumption is resolutely invalid in the case
of energy derivatives. Consequently, to create realistic pricing models in energy
markets, it is essential to understand the behavior of implied volatility.

Application: Delta and vega hedging Take a Black-Scholes’ delta hedging strat-
egy for a call option:

∆ = ∂CBS(S,K, τ, σ)
∂S

=


∂CBS
∂S

if σ is constant
∂CBS
∂S

+ ∂C
∂σ

∂σ

∂S︸︷︷︸
vega

if σ varies

 (3.2.45)

Consider an option portfolio that is delta-neutral but with a vega of −8.000. We
plan to make the portfolio both delta and vega neutral using two instruments: The
underlying stock and a traded option with delta 0.6 and vega 2.0.
To achieve a vega neutral simulation, we need long 8000/2 = 4.000 contracts of
the traded option. With the traded option added to the portfolio, the delta of the

8implied volatility of an option contract is that value of the volatility of the underlying instrument
which, when input in an option pricing model (such as Black-Scholes) will return a theoretical
value equal to the current market price of the option.
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Figure 3.4.: Distributions of the Delta-Gamma hedging error. Parameter set sim-
ilar to Delta hedging with T1 = 1 and T2 = 1.1

portfolio increases from 0 to 0.6× 4.000 = 2.400. We hence also need to short 2.400
shares of the underlying stock ⇒ each share of the stock has a delta of one.

By controlling the vega risk, the hedge error can be reduced by 30%-40% [Der-
man2006]

3.2.1.5. Hedging In Practice

• Traders usually ensure that their portfolios are Delta-neutral at least once a
day. For this reason Delta (neutral) hedging is very important.

• As portfolio becomes larger, hedging becomes less expensive.

• Profits from Black-Scholes PDE: θ + rSt∆ + 1
2σ

2S2
t Γ = rV
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3.2.2. Heston’s Stochastic Volatility Model

The use of stochastic volatility models to evaluate prices of financial derivatives
among market practitioners has increased in the past few years. These models
provide a better calibration to market-implied volatility smiles and skews whilst
providing realistic dynamics to the underlying stock. The Heston model has be-
come particularly popular because of the availability of closed-form formulas for the
Fourier transform of the price of European options. Unlike the Black-Scholes model
where the instantaneous volatility process of the asset prices is assumed to be deter-
ministic, the Heston model describes the volatility process using a mean-reverting
square root process.

3.2.2.1. Derivation of the Heston’s Model

Heston (1993) implemented a stochastic square root of variance
√
u, factor in the

SDE for the evolution of the asset price as

dSt = µStdt+√utStdW1. (3.2.46)

In the Heston model, the square root of variance is assumed to follow an Ornstein-
Uhlenbeck process

d
√
ut = −β√utdt+ δdW2, (3.2.47)

where β is the reversion rate (to zero) and δ is the volatility of the square-root
process. Transforming the square-root stochastic equation into a stochastic equation
of a linear function via the general function G(x) = x2, which has the following
derivatives:

∂G

∂x
= 2x, ∂2G

∂x2 = 2, ∂G

∂t
= 0. (3.2.48)

Application of Ito’s lemma [see Appendix A.1] gives us

dG = ∂G

∂x
dx+ 1

2
∂2G

∂x2 (dx)2 + ∂G

∂t
dt+ 1

2
∂2G

∂t2

dt→0︷ ︸︸ ︷
(dt)2 (3.2.49)

dG = 2xdx+ (dx)2 (3.2.50)

Now assigning x = √ut gives G = utand

dut = 2√ut {−β
√
utdt+ δdW2}+ (−β√utdt+ δdW2)2

. (3.2.51)
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Expanding and removing the insignificant terms gives

dut = {−2βutdt+ 2δ√utdW2}+ δ2 (dW2)2︸ ︷︷ ︸
:=dt

, (3.2.52)

dut =
{
δ2 − 2βut

}
dt+ 2δ√utdW2. (3.2.53)

Now assigning k = 2β as the volatility reversion rate, θ = δ2

2β as the long-term
variance level, and ξ = 2δ as the volatility of the volatility we have

dut = k(θ − ut)dt+ ξ
√
utdW2. (3.2.54)

So we can summarize the Heston dynamic model by three equations

dSt = µStdt+√utStdW1, (3.2.55)

dut = k(θ − ut)dt+ ξ
√
utdW2, (3.2.56)

E [dW1dW2] = ρdt, (3.2.57)

where µ is the rate of return of the asset, θ is the mean-reversion or long-term
variance level (as t → ∞ the expected value ut → θ), k is the volatility reversion
rate at which ut reverts to θ, ξ is the volatility of volatility. The two Wiener processes
are correlated by a constant factor ρ, and u0 is the initial volatility. The Heston
model for a constant volatility reduces to the Black-Scholes model.

3.2.2.2. Heston Partial Differential Equation

The Black-Scholes model assumes a single source of randomness. Inspection of the
Heston model shows two sources of randomness. Thus, it is necessary to theoretically
hedge the risk sources with two options. The risk-free portfolio has a total value
given by

Πt = Vt + ∆St + ΞUt, (3.2.58)

where V is the value of an option, Ξ shares of another option, and ∆shares of asset
stock. The change in portfolio’s value at time t over a short time period is given by

dΠt = dVt + ∆dSt + ΞdUt. (3.2.59)

Now apply Ito’s lemma for the option V
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dV = ∂V

∂t
dt+ ∂V

∂S
dSt + ∂V

∂u
dut + 1

2
∂2V

∂S2 (dSt)2 +

1
2
∂2V

∂u2 (dut)2 + ∂2V

∂u∂S
dutdSt + ∂2V

∂u∂S
dutdSt

Substituting the Heston model dynamics and with the knowledge that (dW1)2 =
(dW2)2 = dt and dW1dW2 = ρdt gives

dV = ∂V

∂t
dt+ ∂V

∂S
dS + ∂V

∂u
du+ 1

2
∂2V

∂S2 uS
2dt+

1
2
∂2V

∂u2 σ
2u+ σuρS

∂2V

∂u∂S
dt

Inserting the expression for dV (identical for dU ) into the change of portfolio equa-
tion gives

dΠt =
{
∂V

∂t
+ 1

2
∂2V

∂S2 uS
2 + 1

2
∂2V

∂u2 σ
2u+ σuρS

∂2V

∂u∂S

}
dt+

Ξ
{
∂U

∂t
+ 1

2
∂2U

∂S2 uS
2 + 1

2
∂2U

∂u2 σ
2u+ σuρS

∂2U

∂u∂S

}
dt

+
{
∂V

∂S
+ Ξ∂U

∂S
+ ∆

}
dS +

{
∂V

∂u
+ Ξ∂U

∂u

}
du︸ ︷︷ ︸

:=0→To forma riskless portofolio

A perfectly hedged portfolio must earn the risk-free rate r and given by

dΠt = rΠt∆t = r(V + ∆S + ΞU)dt. (3.2.60)

Equating the previous two equations and substituting the hedged share ratios given

{
∂V
∂t

+ 1
2
∂2V
∂S2 uS

2 + 1
2
∂2V
∂u2 σ

2u+ σuρS ∂2V
∂u∂S

}
− rV + rS ∂V

∂S

∂V
∂u

=

=

{
∂U
∂t

+ 1
2
∂2U
∂S2 uS

2 + 1
2
∂2U
∂u2 σ

2u+ σuρS ∂2U
∂u∂S

}
− rU + rS ∂U

∂S

∂U
∂u

where the left-hand side contains terms of V and the right-hand side contains terms
of U . The right hand side is equal to the left hand side where both sides are equal
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to a function f(S, u, t) with independent variables S, u, t. Heston (1993) gives this
function as

f(S, u, t) = −k(θ − ut) + λ(S, u, t), (3.2.61)

where λ(S, u, t) is the price of volatility risk. Equating the function f(S, u, t) to the
“V” side and rearranging gives the Heston linear− price PDE as

{
∂V

∂t
+ 1

2
∂2V

∂S2 uS
2 + 1

2
∂2V

∂u2 σ
2u+ σuρS

∂2V

∂u∂S

}

−rV + rS
∂V

∂S
+ {k(θ − ut)− λ(S, u, t)} ∂V

∂u
= 0,

for 0 ≤ t ≤ T , S > 0, V > 0. The Heston PDE can be viewed as a time dependent
convection-diffusion-reaction equation, on an unbounded two-dimensional spatial
domain. The parameter κ > 0 is the mean-reversion rate, θ > 0 is the longterm
mean, σv > 0 is the volatility-of-volatility, ρ ∼ [−1, 1] is the correlation between the
two underlying Brownian motions, and r is the interest rate. In this paper we always
assume that 2κθ > σ2 , which is known as the Feller condition.

3.2.2.3. Decoupled Green Function Approach to the Heston Model

The Heston PDE for the value of a derivative on underlying asset S was derived as

{
∂V

∂t
+ 1

2
∂2V

∂S2 uS
2 + 1

2
∂2V

∂u2 σ
2u+ σuρS

∂2V

∂u∂S

}

−rV + rS
∂V

∂S
+ {k(θ − ut)− λ(S, u, t)}︸ ︷︷ ︸

b(ut)

∂V

∂u
= 0,

for 0 ≤ t ≤ T , S > 0, V > 0. For convenience, define a(ut) = σ
√
ut and b(ut) =

k(θ − ut)− λ(S, u, t). The transform equations

τ = T − t (3.2.62)

x = ln(S) + rτ = ln(Serτ ) = ln(FT ) (3.2.63)

V = W (x, u, τ)e−rt (3.2.64)
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produce the PDE given by

1
2u
(
∂2W

∂x2 −
∂W

∂x

)
+ ρ
√
ua(u) ∂

2W

∂x∂u

+1
2a

2(u)∂
2W

∂u2 + b(u)∂W
∂u

= ∂W

∂τ
,

if we make use of the Fourier transform and inverse Fourier transform pair to analyze
the Heston PDE in Fourier space we have:

W (x;u, τ) = 1
2π

ˆ ∞
−∞

e−iωxW̃ (ω;u,τ), (3.2.65)

W̃ (x;u, τ) =
ˆ ∞
−∞

eiωxW (x;u, τ)dx. (3.2.66)

Applying ∂W̃
∂x

= −iωW̃ to the PDE for W gives

−1
2u(ω2W̃ − iωW̃ ) + [−iωρ

√
ua(u) + b(u)]∂W̃

∂u

+1
2a

2(u)∂
2W̃

∂u2 = ∂W̃

∂τ
.

3.2.2.4. Fourier Terminal Payoff & Heston’s Fundamental Solution (Green
function)

In Hestons’s stochastic volatility framework, the main problem when implementing
Heston’s semi-analytic formulas for European style options is the inverse Fourier
integration (Handbook of Quantitative Finance, Cheng F. Lee, Alice C). We consider
the construction of the Fundamental Solution of Heston’s model in Fourier space.
The terminal condition of the Fourier transform is

W̃ (ω; τ = 0) =
ˆ ∞
−∞

eiωxW (x;u, τ = 0)dx =
ˆ ∞
−∞

eiωxV (x, u, τ = 0)dx. (3.2.67)

The payoff of a European vanilla call option is V (x, u, τ = 0) = (ex −K)+, thus

W̃ (ω; τ = 0) =
ˆ ∞
−∞

eiωx(ex −K)+dx

=
ˆ ∞
ln(K)

e(1+iω)x −Keiωx =
[
e(1+iω)x

1 + iω
−Keiωx

iω

]∞
ln(K)

.
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The solution V of the option is composed of the Green function, G̃, and a (volatility
independent) time T payoff function. Both components defined in Fourier space as

V (x;u, τ) = 1
2πe

−rτ
ˆ iIm(ω)+∞

iIm(ω)−∞
e−iωxW̃ (ω; τ = 0)G̃(ω;u, τ)dω, (3.2.68)

where the terminal condition G̃(ω;u, τ = 0) = 1. The function G is the funda-
mental tranform (or Green function) and is assumed to have an affine form of the
type

G̃(ω;u, τ) = eC(τ,ω)+uD(τ,ω). (3.2.69)

G is a solution to the PDE (similar derived for W̃ )

∂G̃

∂τ
= 1

2a
2(u)∂

2G̃

∂u2 −
1
2u(ω2 − iω)G̃+ (−iωρ

√
ua(u) + b(u))∂G̃

∂u

= 1
2σ

2u
∂2G

∂u2 −
1
2u(ω2 − iω)G̃+ [k(θ − u)− λu− iωρσu]∂G̃

∂u
.

Since the terminal condition G̃(ω;u, τ = 0) = 1 is known and C(τ = 0, u) = 0
and D(τ = 0, u) = 0 for consistency. Replacing the partial derivatives of G̃ in the
previous PDE gives

{
∂C

∂τ
+ u

∂D

∂τ

}
= 1

2σ
2uD2 − 1

2u(ω2 − iω) + [k(θ − u)− λu− iωρσu]D. (3.2.70)

In this differential equation, the terms independent of u are

∂C

∂τ
= κθD, (3.2.71)

and dependent on u are

∂D

∂τ
= 1

2σ
2D2 − 1

2u(ω2 − iω) + [k + λ+ iωρσ]D. (3.2.72)

The final expressions for C andD of Green’s function are

D = κ+ λ+ iωρσ

σ2

(
1− edτ
1− gedτ

)
,
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where

d =
√
σ2(ω2 − iω) + [k + λ+ iωρσ]2, (3.2.73)

and

C = κθ

σ2

[
(k + λ+ iωρσ + d) τ − 2ln

(
1− gedτ

1− g

)]
,

where

g = k + λ+ iωρσ + d

k + λ+ iωρσ − d
. (3.2.74)

We employ an implementation of Heston’s semi-analytical formula to acquire values
of V in a 40x40 grid. For calculating the single integrals occuring in (3.2.68) in MAT-
LAB® version R2008b we use a numerical quadrature rule quadl and in the newest
version R2013a we use the function integral which minimize our computation time.

3.2.2.5. Heston Greeks

Delta is the first derivative with respect to underlying asset price S

∆ = ∂V (x;u, τ)
∂S

= −iω
S

V (x;u, τ) (3.2.75)

Similarly, Gamma is the second derivative with respect to underlying asset price S

Γ = ∂2V (x;u, τ)
∂S2 = −ω

2

S2 V (x;u, τ) (3.2.76)

Vega is the first derivative with respect to underlying asset price variance u

V ega = ∂V (x;u, τ)
∂u

= 1
2πe

−rτ
ˆ iIm(ω)+∞

iIm(ω)−∞
e−iωxW̃ (ω; τ = 0) ∂

∂u
G̃(ω;u, τ)dω

(3.2.77)
with

∂

∂u
G̃(ω;u, τ) = ∂

∂u
(eC(τ,ω)+uD(τ,ω)) = D(τ, ω)G̃(ω;u, τ) (3.2.78)

Vega is given by
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Figure 3.5.: European call price as a function of time to expiration and initial asset
price calculated using a Fourier inversion of the fundamental transform Heston
model

V ega = ∂V (x;u, τ)
∂u

= 1
2πe

−rτ
ˆ iIm(ω)+∞

iIm(ω)−∞
e−iωxW̃ (ω; τ = 0)

{
D(τ, ω) ∂

∂u
G̃(ω;u, τ)

}
dω

An advantage of the Heston model is its ability to replicate the volatility skew
present in market option data as implied from the Black-Scholes equation. This
skew arises from the negative correlation, typically −1 < u < −0.7, between the
volatility to the asset price.
As discussed, the Black-Scholes model ignores two possible behaviors of the stock
process, and those are discontinuity of the stock process and changes in volatility.
One way to handle the second one and to model our market in a more realistic way
is to use stochastic volatility models such as the Heston model. However the market
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Figure 3.6.: (Top) Call price and option (bottom) Delta as a function of initial
volatility (v0 =0.2) and initial asset price calculated via Fourier inversion of the
Heston model

still uses the Black-Scholes formula in order to price traded derivatives. The question
is which value of volatility we should include in to the Black-Scholes formula in order
to obtain the right option price.

After solving the Heston PDE we have calculated the option price in terms of an
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Figure 3.7.: (Top) Gamma and (bottom) Vega as a function of initial variance
(v0=0.3) and initial asset price calculated via Fourier inversion of the Heston
model.

underlying asset. This asset has some volatility that varies over time. Therefore all
we have to do to answer the question above is to equalize the price of the derivative
we have calculated with the Black-Scholes formula and solve for the volatility. The
solution to this equation will give us the implied volatility that corresponds to the
option price that we calculated. In this sense we can say that the importance of the
implied volatility is that it is that value of volatility which gives us a more accurate
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price of the derivative we are pricing.
The implied volatility cannot be calculated analytically because the Black-Scholes
model cannot be inverted. For this reason in our simulation we used the Matlab
function fminsearch which is quite robust becasue it uses a simplex search algo-
rithm (Lagarias et al. 1998) and rapidly finds the implied volatility by minimizing
the squared difference between the Black-Scholes price (that is found by varying the
volatility) and the Heston model call price.

Figure 3.8.: Corresponding volatility implied from Black-Scholes equivalent call
price for a fixed strike price, initial asset price and risk-free rate.

For a fixed initial asset price S0, Figure 3.9 shows that implied volatility is much
greater at a low strike price for option deep in the money. A large smirk is observed
for a large negative correlation between asset price and volatility. A correlation near
zero will flatter the smirk but the implied volatility will still be slightly higher at a
low strike price.
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Figure 3.9.: Implied volatility for 4 different correlations ρ = −0.8,−0.4, 0.0, 0.4.
A correlation near zero will flatter the smirk but the implied volatility will still be
slightly higher at a low strike price.

For positive correlation, the implied volatility will be higher for options with a high
strike price. Still, stochastic volatility models can only create a steep short-term
smile when the volatility of the volatility is large. Another practical feature of the
Heston model is the ability for the implied volatility smirk to flatter and decrease
for options contracted for a longer expiration time.
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Part III.

Numerical Aspects
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4. Finite-Difference Methods

4.1. Fundamentals

Finite difference methods (FDM) for option pricing are numerical methods used in
mathematical finance for the valuation of options. The finite-difference method gives
an approximation of a derivative price evolution on a grid which typically represents
time and the underlying asset price but can include and other factors such as rate
or volatility. The evolution is dictated by the partial differential equation (PDE) of
the asset model and the derivative. The standard method is to start with the known
values at expiration and to solve the set of derivative values at the previous time
step. In general, finite-difference method is effective for solving derivatives that can
be described moving backwards in time such as American options. Additionally,
Greeks can be found directly from the gradient in the value of the nodes on the
exercising grid. Standard finite difference methods suffer from high computational
cost when a derivative depend on several underlying variables and so we have to
solve a multidimensional problem.

4.1.1. Difference Approximation

The Taylor series expansion of the first derivative of a function f in the forward and
backward direction at a point x gives,

f
′(x) = f(x+ h)− f(x)

h
+O(h)︸ ︷︷ ︸

forward

f
′(x) = f(x)− f(x− h)

h
+O(h)︸ ︷︷ ︸

backward

, f ∈ C2.

(4.1.1)
Direct application gives the first derivative of the option price with respect to the
stock price about the node (i, j)

D+
∆Sfi,j = fi,j+1 − fi,j

∆S︸ ︷︷ ︸
forward

D−∆Sfi,j = fi,j − fi,j−1

∆S︸ ︷︷ ︸
backward

(4.1.2)

It is usually best to use an average of the previous two as a symmetric central
difference
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D0
∆Sfi,j = fi,j+1 − fi,j−1

2∆S (4.1.3)

A similar symmetric difference has the second order derivative of the option price
with respect to the stock price about the node (i, j)

D2
∆Sfi,j = fi,j+1 − 2fi,j + fi,j−1

(∆S)2 (4.1.4)

4.1.2. Finite Difference Grid

The main idea is to examine the evolution of the derivative price across a grid of
asset prices and time. Typically, the option expiration is set at time T and the
present time is set at t.

Figure 4.1.: Detail and notations of the grid [Seydel]

The points along time direction are at N +1 equally spaced points, with a time step
∆τ = T/N . Similarly the other axis of the grid consists of I+1 equally spaced stock
prices, with a stock price step of ∆X = Xmax/I . This defines a two-dimensional
uniform grid as illustrated in Figure 2.
Transforming the (X, τ)-grid to the (S, t)-plane, leads to a nonuniform grid with
unequal distances of the grid lines S = Si = S0e

Xi . The spacing for the log stock
price grid

Xi = −Xmax, .....,−2∆X,−∆X, 0,∆X, 2∆X, ...., Xmax (4.1.5)

corresponds to a stock price spacing of

Si = S0e
−Xmax , ....., S0e

−2∆X , ...., 0, ..., S0e
−2∆X , ...., S0e

Xmax (4.1.6)
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So the value of the derivative fi,j is evaluated as fi,j = f(τ = i∆τ, S = j∆S). The
evolution of the backward price moving in time is described by the particular dif-
ferential equation of the model. The PDE cannot be directly applied to the nodes
of the grid. Rather, a Taylor series expansion is used to approximate the deriva-
tives by the values at the current and neighborhoods nodes. This approximation is
accomplished by an explicit (forward in time) method, implicit (backward in time)
method or a compilation of two the Crank-Nicolson (equally weighted) method.

4.2. European Style Options

4.2.1. Boundary conditions

European call options A first boundary condition for a European call option which
is deep in-the-money at Smax at any point along the boundary is assumed to pay off
ST −K at expiration time T . The strike price value K is discounted back to time
t, and at time t the asset price is S(t) by arbitrage-free pricing. Thus the boundary
condition reads

ci,j=M = f(t = i∆t, Smax = M∆S) = Smaxe
−qt − e−r(T−t)K. (4.2.1)

A second boundary condition is for a deep out-of-the-money European call option
at S = 0. For any time point along the boundary has no probability to return
in-the-money and its value is

ci,j=0 = f(t = i∆t, Smax = 0) = 0. (4.2.2)

The third boundary condition is when the European call option is valued by defini-
tion at time T as

c = max(ST −K, 0) = (ST −K)+. (4.2.3)

European put options In the same way as previous for the European call options
a deep in-the-money European put option at S = 0 along the boundary for any time
point will be zero for all future time points. At expiration will be worth K. Thus
the boundary condition is

pi,j=0 = f(t = i∆t, S = 0) = e−r(T−t)K. (4.2.4)

A deep out-of-the-money put at Smax for any time point along the boundary which
has no probability to to return in-the-money valued by
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pi,j=M = f(t = i∆t, Smax = M∆S) = 0. (4.2.5)

The third boundary condition is when the European put option is valued by defini-
tion at time T as

p = max(K − ST , 0) = (K − ST )+. (4.2.6)

4.2.2. Explicit (Forward in Time) FDM

By applying the forward partial derivative approximations to the Black-Scholes PDE
gives

fi+1,j − fi,j
∆t + (r − q)j∆Sfi+1,j+1 − fi+1,j−1

2∆S +
1
2σ

2(j∆S)2fi+1,j+1 − 2fi+1,j + fi+1,j−1

(∆S)2 = rfi,j

where Sj = j∆S. Disentangling the current option price and multiplying be a
common ∆t gives

fi,j = fi+1,j−1
−1

2(r − q)j∆t+ 1
2σ

2j2∆t
1 + r∆t︸ ︷︷ ︸

aj

+fi+1,j
1− σ2j2∆t

1 + r∆t︸ ︷︷ ︸
bj

+fi+1,j+1

1
2(r − q)j∆t+ 1

2σ
2j2∆t

1 + r∆t︸ ︷︷ ︸
cj

or with in a short-hand notation

fi,j = ajfi+1,j−1 + bjfi+1,j + cjfi+1,j+1 (4.2.7)

4.2.3. Implicit (Backward in Time) FDM

By applying the forward partial derivative approximations to the Black-Scholes PDE
gives

fi+1,j − fi,j
∆t + (r − q)j∆Sfi,j+1 − fi,j−1

2∆S
+1

2σ
2(j∆S)2fi,j+1 − 2fi,j + fi,j−1

(∆S)2 = rfi,j
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Rearranging gives

(1
2(r − q)j∆t− 1

2σ
2j2∆t

)
︸ ︷︷ ︸

aj

fi,j−1

+ (1 + r∆t+ σ2j2∆t)︸ ︷︷ ︸
bj

fi,j

+
(
−1

2(r − q)j∆t− 1
2σ

2j2∆t
)

︸ ︷︷ ︸
cj

fi,j+1 = fi+1,j

This can be expressed in matrix form as



b0 c0 0 · · · 0
a1 b1 c1

. . . ...
0 . . . . . . . . . 0
... . . . aM−1 bM−1 cM−1
0 0 0 aM bM


︸ ︷︷ ︸

M



fi,0
fi,1
...

fi,M−1
fi,M

 =



fi+1,0
fi+1,1
...

fi+1,M−1
fi+1,M

 (4.2.8)

The implicit method relaxes the Courant [CFL] stability limit, and thus the number
of required time steps is usually less. The value of the options at the previous time
step is repeatedly solved until the present time is reached. For a model without
stochastic volatility, the matrix M does not vary in time and can be calculated just
once.

4.2.4. The Crank-Nicolson Method

The Crank-Nicolson method attempts to improve the stability and convergence av-
eraging explicit and implicit techniques. The CN method, or trapezoidal method,
relies in symmetric weighting at the half time step and given by

fi+ 1
2 ,j

= 1
2(fi,j + fi+1,j) (4.2.9)

Applying to the Black-Scholes finite differential equation (3.2.27) we take

fi+1,j − fi,j
∆t + (r − q)j∆S

fi+ 1
2 ,j+1 − fi+ 1

2 ,j−1

2∆S +

1
2σ

2(j∆S)2
fi+ 1

2 ,j+1 − 2fi+ 1
2 ,j

+ fi+ 1
2 ,j−1

(∆S)2 = rfi+ 1
2 ,j
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Separating the explicit and implicit terms gives

fi+1,j − fi,j
∆t + (r − q)j∆S

1
2(fi,j+1 + fi+1,j+1)− 1

2(fi,j−1 + fi+1,j−1)
2∆S

+1
2σ

2(j∆S)j2
1
2(fi,j+1 + fi+1,j+1)− (fi,j + fi+1,j) + 1

2(fi,j−1 + fi+1,j−1)
(∆S)2

= r
1
2(fi,j + fi+1,j)

Canceling and rearranging gives

fi+1,j − fi,j
∆t + 1

4(r − q)j(fi,j+1 − fi+1,j−1)

+1
4(r − q)j(fi+1,j+1 − fi+1,j−1)

+1
2j

2σ2(1
2fi,j+1 − fi,j + 1

2fi,j−1)

+1
2j

2σ2(1
2fi+1,j+1 − fi+1,j + 1

2fi+1,j−1)

= (r1
2fi,j + r

1
2fi+1,j)

Arranging into the format of Brandimarte [Bra2006], we get

1
4∆t{−j2σ2 + (r − q)j}fi,j−1 +

{
1 + ∆t12(r + j2σ2)

}
fi,j

−1
4∆t

{
j2σ2 + (r − q)j

}
fi,j+1

= 1
4∆t

{
j2σ2 − (r − q)j

}
fi+1,j−1 +

{
1−∆t12(r + j2σ2)

}
fi+1,j

+1
4∆t

{
j2σ2 + (r − q)j

}
fi+1,j+1

We can rewrite the previous formula in a sorter form as

− ajfi,j−1 + (1− βj)fi,j − γjfi,j+1 = ajfi+1,j+1 + (1 + βj)fi+1,j + γjfi+1,j+1 (4.2.10)

where the coefficient parameters are
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4.2 European Style Options

aj = 1
4∆t{−j2σ2 + (r − q)j}

βj = −∆t12(r + j2σ2)

γj = 1
4∆t

{
j2σ2 + (r − q)j

}

In matrix notation the previous formula gives M1fi = M2fi+1

M1︷ ︸︸ ︷

1− β1 −γ1 0 · · · 0
−a2 1− β2 −γ2

. . . ...
0 . . . . . . . . . 0
... . . . aM−2 1 + βM−2 −γM−2
0 0 0 −aM−1 1− βM−1





fi,1
fi,2
...

fi,M−2
fi,M−1



=



1 + β1 γ1 0 · · · 0
a2 1 + β2 γ2

. . . ...
0 . . . . . . . . . 0
... . . . aM−2 1 + βM−2 γM−2
0 0 0 aM−1 1 + βM−1


︸ ︷︷ ︸

M2



fi+1,1
fi+1,2
...

fi+1,M−2
fi+1,M−1



In quasi-matrix format, the boundary values are added to the interior matrix terms
by

M1fi = M2fi+1 −



−a1fi,0
0
...
0

−γM−1fi,M

+



a1fi+1,0
0
...
0

γM−1fi+1,M



= M2fi+1 +



a1(fi+1,0 + fi,0)
0
...
0

γM−1(fi+1,M + fi,M)


︸ ︷︷ ︸

ri+1
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The simplest technique to find the fi values is matrix left division, (in MATLAB
notation fi = M1\ri+1) repeated at each time step i. More elegant is a precalculation
of the LU decomposition and then a two-step matrix left division at each time step
((in MATLAB notation fi = U\(L\ri+1)). These approaches are valuable to give a
European option value but cannot be applied to calculate American style options.
The main issue is that an American option requires the option value to be compared
to its intrinsic value via the maximum function at each step and node. To tackle
this problem many different numerical techniques have been developed.

Figure 4.2.: European call and put option price via Crank-Nicolson on a PDE grid
for a non-dividend-paying commodity

4.3. American Style Options

4.3.1. Successive Over relation Technique

The implicit or Crank-Nicolson technique concurrently calculates all the nodes at
the current time layer. Thus, if one option node value converts to its intrinsic value,
then there is no mechanism to spread this new information to the other nodes.
A preferred technique approaches the correct set of values within a small tolerance
via a successive over relation (SOR) [Cryer]. In SOR, the old set of values are
updated by the difference with the new set of values multiplied by a dumping func-
tion ω. A generic matrix can be divided into the strictly lower triangular matrix
L, strictly upper triangular matrix U , and the diagonal D. Thus, matrix equation
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4.3 American Style Options

Mx = r can be written as

Dx+ Lx+ Ux = r

ωDx+ ωLx+ ωUx = ωr

Dx−Dx+ ωDx+ ωLx+ ωUx = ωr

[D + ωL]x+ [ωU + (ω − 1)D]x = ωr

x = [D + ωL]−1 {ωr − [ωU + (ω − 1)D]x} .

The goal is to iteratively update the value x(k+1) from the previous iteration x(k)

x(k+1) = [D + ωL]−1
{
ωr − [ωU + (ω − 1)D]x(k)

}
. (4.3.1)

AsD+ωL is triangular in form, the update simplifies to this node-by-node sequential
update as

x(k+1) = (1− ω)x(k)
i + ω

aii

ri −∑
j>i

aijx
(k)
j −

∑
j<i

aijx
(k+1)
j

 . (4.3.2)

The damping function must be in the range 0 < ω < 2. It is not possible to predict
the optimal damping parameter (except the case of special matrices), but the range
ω = 1.2− 1.5 is usually satisfactory.

4.3.2. Crank-Nicolson Scheme For American Options

The Crank-Nicolson scheme for a Black-Scholes option PDE, with the known option
values contained in ri+1, is

M1fi = ri+1 (4.3.3)

with the triadiagonal matrix M1

M1 =



1− β1 −γ1 0 · · · 0
−a2 1− β2 −γ2

. . . ...
0 . . . . . . . . . 0
... . . . aM−2 1 + βM−2 −γM−2
0 0 0 −aM−1 1− βM−1


(4.3.4)

which allows a simplification via the SOR scheme to

f
(k+1)
j = f

(k)
j + ω

(1− β1)(ri+1 + γjf
(k)
j − (1− βj)f (k)

j + ajf
(k+1)
j−1 ). (4.3.5)
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4.3.3. American Options as Free Boundary Problems

The value of an American option can never be smaller than the value of a European
option

V Am ≥ V Eur. (4.3.6)

In addition, an American option has at least the value of the payoff. So we have
elementary lower bounds for the value of American options.

4.3.3.1. Early-Exercise Curve

A European option can have a value that is smaller than the payoff. This can
not happen with American options. If for instance an American put would have
a value V Am

P < (K − S)+, one would simultaneously purchase the asset and the
put, and exercise immediately. An analogous arbitrage argument implies that for
an American call the situation V Am

C < (S − K)+ can not prevail. Therefore the
following inequalities

V Am
P ≥ (K − S)+,
V Am
C ≥ (S −K)+,

(4.3.7)

hold for all (S, t). This result agrees also with our simulation.

4.4. Option Greeks

The computation of the Greeks plays an important role in trading strategies and
the implied risk. The valuation of certain option Greeks is intrinsically calculated
by the PDE grid. The grid based techniques used above calculated the value of
the option price for a several underlying asset prices over a range of time. Delta is
the rate of change of the option price with respect to the underlying asset price. A
central difference scheme extracts Delta from the PDE grid as

∆c = D0
∆Sci,j = ci,j+1 − ci,j−1

2∆S (4.4.1)

∆p = D0
∆Spi,j = pi,j+1 − pi,j−1

2∆S (4.4.2)

Similarly, the Greek Gamma is found by

D2
∆Sci,j = ci,j+1 + 2ci,j − ci,j−1

∆S2 (4.4.3)
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4.5 Heston - Multidimensional PDE

Figure 4.3.: European and American call option for t < T . K = 100, r = 0.03,
σ = 0.3 and T = 1

D2
∆Spi,j = pi,j+1 + 2pi,j − pi,j−1

∆S (4.4.4)

Adding a stochastic volatility process to augment the asset price model is known
to replicate many of the features observed in market data. Equity options display
implied volatility that indicate a negative correlation between volatility and asset
price. The next section introduces an additional dimension on the PDE grid to
describe the stochastic volatility.

4.5. Heston - Multidimensional PDE

Several models have been proposed that introduce a second stochastic factor to the
particular model. To introduce a second factor requires adding an additional di-
mension to the finite difference approach. The Heston model is particularly popular
among the stochastic volatility models. The Heston PDE as we show is given by
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Figure 4.4.: A comparison of Delta and Gamma for a European (via matrix divi-
sion) and American (via SOR) for option values on a PDE grid
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4.5 Heston - Multidimensional PDE

{
∂V

∂t
+ 1

2
∂2V

∂S2 uS
2 + 1

2
∂2V

∂u2 σ
2u+ σuρS

∂2V

∂u∂S

}

− rV + rS
∂V

∂S
+ {k(θ − ut)− λ(S, u, t)} ∂V

∂u
= 0

with t ∈ [t0, T ], S ∈ [S0, Smax], u ∈ [0, umax]. The Heston model can be rewritten as
[Galiotos08]

∂V

∂t
+ AV − rV = 0 (4.5.1)

where A is a generator of the Heston model

A = rS
∂

∂S
+ 1

2S
2u

∂2

∂u2︸ ︷︷ ︸
Black−Scholes

+

{k(θ − ut)− λ(S, u, t)} ∂
∂u

+ 1
2
∂2

∂u2σ
2u+ σuρS

∂2

∂u∂S︸ ︷︷ ︸
Stochastic volatility

4.5.1. Explicit Heston Finite Difference Approach

The finite difference scheme takes the known intrinsic values of a call or put at
contract expiration and repeatedly marches back in time, calculating the option
value at every node at each time step. The explicit approach calculates the option
values at the current time step tn = ndt only from known option values at the
previously calculated (forward in time, tn+1 = (n + 1)dt) set of nodes. The Heston
model is stochastic in variance and asset price, which necessitates a two-dimensional
finite grid. Substituting the appropriate partial differentiations into (4.5.1) gives the
explicit finite difference scheme as

V n−1
i,j − V n

i,j

∆t =


(Si)2V n

j

V ni+1,j−2V ni,j+V
n
i−1,j

2(∆S)2

+ρσSiV n
j

V ni+1,j+1+V ni−1,j−1−V
n
i−1,j+1−V

n
i+1,j−1

4∆S∆u
+σ2V n

j

V ni,j+1−2V ni,j+V
n
i,j−1

2(∆u)2 + rSi
V ni+1,j−V

n
i−1,j

2∆S

+{k(θ − ut)− λ}
V ni,j+1−V

n
i,j−1

2∆u − rV n
i,j

 (4.5.2)

Rearranging gives the dynamic equation for the explicit finite difference scheme as

V n−1
i,j = Ani,jV

n
i,j +Bn

i,j{Vi+1,j−1 + Vi−1,j+1 − Vi−1,j+1 − Vi+1,j−1}
+Cn

i,jV
n
i−1,j +Dn

i,jV
n
i+1,j + En

i,jV
n
i,j−1 + F n

i,jV
n
i,j+1

(4.5.3)
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where the coefficients are given as [Lin2008]

Ani,j = 1− i2uj∆t− σ2j∆t
∆u − r∆t

Bn
i,j = ρσij

4 ∆t
Cn
i,j =

(
i2uj

2 −
ri
2

)
∆t

Dn
i,j =

(
i2uj

2 + ri
2

)
∆t

En
i,j =

(
σ2j
2∆u −

k(θ−ut)−λ
2∆u

)
∆t

F n
i,j =

(
σ2j
2∆u + k(θ−ut)−λ

2∆u

)
∆t

(4.5.4)

with Si = i∆S and uj = j∆u.

4.5.1.1. Explicit Stability limit

The ∆t time step must be sufficiently small relative to the other parameters to
maintain stability. Specifically, the parameters A,C,D,E and F must be positive.

The parameter A requires

Ani,j = 1− i2uj∆t−
σ2j∆t

∆u − r∆t ≥ 0→

∆t ≤ 1
i2uj∆t− σ2j

∆u + r
= 1
i2uj − Jσ2j

umax
+ r

as ∆u = umax
J

. Considering only the largest variance value umax and largest i-value
(of I) gives the stability limit as

∆t ≤ 1
I2umax + Jσ2 + r

(4.5.5)

The parameter C requires

Cn
i,j =

(
i2uj

2 − ri

2

)
∆t ≥ 0→ i ≥ r

uj
(4.5.6)

The parameter E requires

En
i,j =

(
σ2j

2∆u −
k(θ − ut)− λ

2∆u

)
∆t ≥ 0→ i ≥ k(θ − ut)− λ

σ2 (4.5.7)
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Figure 4.5.: Explicit finite difference calculation for the Heston model on a 2-
dimensional grid of volatility and asset price for a European call option contracted
for different expirations.

4.5.1.2. Heston PDE Boundary condition

The boundary conditions in the Heston model at expiration, or at the minimum
or maximum asset price, is similar to the boundary conditions discussed earlier on
this chapter for the Black-Scholes model (model without stochastic volatility). For
review, the terminal condition at expiration for a call option is c(S, u, t = T ) =
max(ST −K, 0) or for a put option is p(S, u, t = T ) = max(K − ST , 0). The plane
of nodes that correspond to an asset price of zero is assumed to have a call option
value of zero, c(S = 0, u, t) = 0. This type of constant boundary condition is also
known as a Dirichlet boundary condition.

The plain of nodes that correspond to the maximum asset price can use either a
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constant-value Dirichlet or constant-first-derivative Neumann boundary condition.
The Dirichlet boundary condition assumes that the call option value is equal to its
intrinsic value, c(S = Smax, u, t) = Smax − K. The Neumann boundary condition
assumes the option value near the boundary grows linearly in S,

∂c(S = Smax, u, t)
∂S

= 1, (4.5.8)

which is expressed in discrete form as

c(S = I∆S, u, t) = c(S = (I − 1)∆S, u, t) + ∆S. (4.5.9)

The new issue is using a discrete version of the stochastic volatility Heston model is
how to deal with the boundary at the maximum and minimum volatility. Logically,
the option value increases with increasing volatility. The increase tends to level out
at very high variance. Therefore, at the plane of the maximum variance, the rate of
change in option price with respect to the volatility is set to zero

∂c(S, u = umax, t)
∂u

= 0, (4.5.10)

which is expressed in discrete form as

c(S, u = J∆u, t) = c(S, u = (J − 1)∆u, t). (4.5.11)

The choice at the minimum volatility requires examining the Heston PDE with
u = 0, that is

∂c

∂t
= −rc+ rS

∂c

∂S
+ {kθ − λ} ∂c

∂u
. (4.5.12)

The corresponding explicit finite difference equation at j = 0 is

cn−1
i,0 − cni,0

∆t = rSi
cni+1,0 − cni−1,0

2∆S + (kθ − λ)
cni,1 − cni,0

∆u − rcni,0, (4.5.13)

which yields

ci,0 = rSi
cni+1,0−c

n
i−1,0

2∆S ∆t+ {kθ − λ} ∆t
∆uc

n
i,1

+(1− r∆t− {kθ − λ} ∆t
∆u)cni,0.

(4.5.14)

Evaluating an American style call or put option by the explicit technique is fairly
straightforward, as it only requires comparison of all the nodes to their intrinsic
value at each time step.
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Figure 4.6.: Explicit finite difference calculation for the Heston model on a 2-
dimensional grid of volatility and asset price for the delta of a European call
option contracted for different expirations.

4.5.1.3. Numerical Simulation

We perform numerical simulations with a small time step ∆t = T/1000 to obtain
a sufficiently accurate approximation of the option value c in the four cases of pa-
rameter sets given by Table 4.1. Observe that in three of the four cases there is a
substancial correlation factor ρ. Only in Case 4 the correlation factor is relatively
small.

Case 1 has been taken from Albrecher et. al. [Alb07], where we have chosen T = 1.
Case 2 comes from Bloomberg [Blo05]. A special feature of this parameter set is
that σ is close to zero, which implies that the Heston PDE is convection-dominated
in the value-direction. Values of r and T were not specified in Bloomberg and have
been chosen separately. Case 3 has been taken from Schoutens et. al. [Sch04]. Here
the Feller condition is satisfied in the limit case. Finally, Case 4 stems from Winkler
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et. al. [Winkler02].

Case 1 Case 2 Case 3 Case 4
κ 1.5 3 0.6067 2.5
θ 0.04 0.12 0.0707 0.06
σ 0.3 0.04 0.2928 0.5
ρ -0.9 0.6 -0.7571 -0.1
r 0.025 0.01 0.03 0.0507
T 1 1 3 0.25
K 100 100 100 100

Table 4.1.: Parameters for the Heston model and European call options

Figure 4.7.: Heston model European call option value in the four cases given by
Table 4.1.

We employ an implementation of Heston’s semi-analytical formula with the param-
eter set of Case1.
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Figure 4.8.: Surface of the value error between Heston explicit model and semi-
analytical formula

Figure 4.9.: (left) Option value for σ = 0 (right) option value for σ = 1.

From the Figure 4.8 and Figure 4.9, we can observe that the error is increased when
the volatility increases and we are deeper in-the-money (ITM).
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4.5.2. Implicit Heston Finite Difference Approach

The implicit approach calculates the option values at the current time step tn =
ndt in a coupled approach. Only known option value at the previously calculated
(forward in time, tn+1 = (n + 1)dt) set of nodes is used in the calculation. The
implicit finite difference scheme is

V n
i,j − V n+1

i,j

∆t =


(Si)2V n

j

V ni+1,j−2V ni,j+V
n
i−1,j

2(∆S)2

+ρσSiV n
j

V ni+1,j+1+V ni−1,j−1−V
n
i−1,j+1−V

n
i+1,j−1

4∆S∆u
+σ2V n

j

V ni,j+1−2V ni,j+V
n
i,j−1

2(∆u)2 + rSi
V ni+1,j−V

n
i−1,j

2∆S

+(k(θ − ut)− λ)V
n
i,j+1−V

n
i,j−1

2∆u − rV n
i,j

 (4.5.15)

Rearranging gives the dynamic equation for the implicit finite difference scheme as

V n+1
i,j = ani,jV

n
i,j + bni,j{Vi+1,j−1 + Vi−1,j+1 − Vi−1,j+1 − Vi+1,j−1}

+cni,jV n
i−1,j + dni,jV

n
i+1,j + eni,jV

n
i,j−1 + fni,jV

n
i,j+1

(4.5.16)

where [Lin2008]

ani,j = 1 + i2uj∆t+ σ2j∆t
∆u + r∆t

bni,j = −ρσij
4 ∆t

cni,j = −
(
i2uj

2 −
ri
2

)
∆t

dni,j = −
(
i2uj

2 + ri
2

)
∆t

eni,j = −
(
σ2j
2∆u −

k(θ−ut)−λ
2∆u

)
∆t

fni,j = −
(
σ2j
2∆u + k(θ−ut)−λ

2∆u

)
∆t

(4.5.17)

If we compare the implicit with the explicit coefficients we will see that are equal in
magnitude but opposite in sign, except the coefficient ani,j = −Ani,j + 2.
When we studied the impicit technique in the one-dimensional model (Black-Scholes),
it was discussed that the implicit method relaxes the Courant–Friedrichs–Lewy con-
dition [CFL] that constrains the explcit technique. As a consequence, the time step
must be less than a certain time in many explicit time-marching computer simula-
tions, otherwise the simulation will produce incorrect results. In other words, the
implicit technique allows a larger time interval and fewer total time steps. Nev-
ertheless, the computational burden can be increased, as some type of inversion is
necessary. In the one-dimensional, the option value caculated in a stepwise manner
at successive time steps. The same technique can be used and here. This technique
can accelerate convergence to the American option value within some small error
tolerance.
We run simulation for explicit scheme with T = 1 and dt = 1/1000. This time
step is needed in our simulation case to be stable. The computational time is a
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Figure 4.10.: Computational time (sec) for Implicit method for different time step
size dt comparing to the explicit method time.

result from simulations in a laptop with AMD 1.5 GHZ processor and is 11.56 sec.
Moreover, we simulate the implicit scheme initially with the same timr step dt and
after with 2dt, 10dt,100dt.
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Part IV.

Forward and Futures
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5. Forward Price

Historically forwards and futures have been used in the energy market for physical
delivery. The buyer of the physical contract provides a payment as defined by
the fixed contract price and the seller delivers the commodity to a predetermined
location at conculsion of the contract. If we consider the NYMEX natural gas
markets we note market participants could enter into contracts to purchase natural
gas deliveries in future months for fixed prices.

5.1. Contango and Backwardation

While the word contango may sound mysterious, it is used to describe a fairly normal
pricing situation in futures. A market is said to be in contango when the forward
price of a futures contract is above the expected future spot price Ft,T > Et[ST ] > St.
Contango occurs when speculators, to make a profit (on average), will short (sell)
the forward contract with the expectation that as time passes the forward contract
will decline to match the expected lower spot price. Normal backwardation, which
is essentially the opposite of contango, occurs when the forward price of a futures
contract is below the expected future spot price Ft,T < Et[ST ] < St. Because
contango and backwardation are known states in the market, traders can employ
strategies that attempt to exploit them.

5.2. Forward Price PDE

Again we derive the differential equation for the forward price by applying arbitrage-
free arguments to a risk-free portfolio formed by hedging a forward contract with
stock shares [Mastro]. The basic geometric Brownian motion model of a stock is
given by

dSt = µStdt+ σStdW (5.2.1)

where, again, µ is the mean rate return, σ is the annual volatility and dW ∼ N(0, 1).
We will assume that the underlying randomness in the forward price and volatility
is the same. This assumption allows the randomness in n shares of the underlying
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stock to be hedged with a forward contract. This creates a risk-free portfolio with
a total value

Πt = Ft,T + nSt (5.2.2)

Since changes in the asset (stock) price are linked to changes in the forward contract
price, the change in portfolio value is written as

dΠt = dFt,T + ndSt (5.2.3)

A perfectly hedged portfolio will earn the risk-free rate r as given by

dΠt = rnStdt = dFt,T + ndSt (5.2.4)

Similar to arguments used previously opportunities would exist if a risk-free portfolio
earned more or less than the risk-free rate.
Ito’s lemma allows us to define the instantaneous price change of the forward price
as

dF = ∂F

∂S
dS + ∂F

∂t
dt+ 1

2
∂2F

∂S2 (dS)2 (5.2.5)

Substituting (5.2.1) into (5.2.5) the forward differential spot price is

dF =
(
∂F

∂S
µSt + ∂F

∂t
+ 1

2
∂2F

∂S2 σ
2S2

t

)
dt+ ∂F

∂S
σStdW (5.2.6)

and inserting (5.2.6) into (5.2.4) gives

rnStdt− ndSt = dFt,T =
(
∂F
∂S
µSt + ∂F

∂t
+ 1

2
∂2F
∂S2 σ

2S2
t

)
dt+ ∂F

∂S
σStdW(

∂F
∂S
µSt + ∂F

∂t
+ 1

2
∂2F
∂S2 σ

2S2
t − rnSt

)
dt+ n

dSt︷ ︸︸ ︷
(µStdt+ σStdW ) +∂F

∂S
σStdW = 0(

∂F
∂S
µSt + ∂F

∂t
+ 1

2
∂2F
∂S2 σ

2S2
t − rnSt + nµSt

)
dt+ (∂F

∂S
σSt + nσSt)dW = 0(

∂F
∂S
µSt + ∂F

∂t
+ 1

2
∂2F
∂S2 σ

2S2
t − rnSt + nµSt

)
dt+ (∂F

∂S
+ n)σStdW︸ ︷︷ ︸

:=0

= 0

(5.2.7)
Since there cannot be portfolio risk associated with random movements dW , the
portfolio is continuously hedged such that the number of shares is n = − ∂F

∂St
. The

final differential equation for the forward price is

∂F

∂t
+ 1

2
∂2F

∂S2 σ
2S2

t + r
∂F

∂St
St = 0 (5.2.8)
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5.3. Convenience Yield

Commodity forward prices have an independent stochastic behavior not explained
by spot prices. Since the convenience yield (CY) appears as a factor which cannot
be observed directly, stochastic filtering has been proposed as a strategy of choice
for its estimation from observed market prices. The convenience yield is the sum of
additional benefits for owning a commodity in the integral time [t, T ] compared to
accepting delivery of the commodity at time T via forward contract. If there is not
sufficient storage capacity the commodity prices follow strong seasonality patterns.
However, storage of energy products is costly and sometimes practically impossible
like in the case of electricity. So the convenience yield is defined as

δ= Benefit owning commodity − Cost of carry (5.3.1)

5.3.1. Forward Price with Fixed Convenience Yield

The convenience yield corrects for the added value of owning the connodity relative
to owning a forward contract. The convenience yield term summarizes the prediction
of market participants on the future supply of the commodity. An expected low sup-
ply translates into a premium for the owning the commodity, i.e. high convenience
yield. In contrast, an expected abundant supply manifests as a low convenience
yield.
So, the price process of the commodity from the nonholder’s view is

dSnonholdert = (µ− δ)Stdt+ σStdW, (5.3.2)

and from the holder’s view is

dSholdert = µSdt+ σStdW. (5.3.3)

Rewritting the change in portfolio value at time t over a time period dt gives

dΠt = dF nonholder
t,T + ndSholdert , (5.3.4)

which will still earn the risk-free rate r as described by

dΠt = rnSholdert = dF nonholder
t,T + ndSholdert . (5.3.5)

In the same way used previously [Mastro] in the derivation of the forward price
differential equation, the differential equation for the forward price with a fixed
convenience yield δ can now be written as
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∂F

∂t
+ 1

2
∂2F

∂S2 σ
2S2

t + (r − δ) ∂F
∂St

St = 0 (5.3.6)

where the drift must equal to the risk-free rate minus the convenience yield, else
arbitrage opportunities would be present. Assuming the forward price is linear in
S, the fair value is

F0 = S0e
(r−δ)T (5.3.7)

5.3.2. Forward Price with Stochastic Convenience Yield

Adding a stochastic convenience yield

dδt = k(a− δt)Stdt + σ2dW2 (5.3.8)

naturally requires a derivation that includes the movement of the forwards price
relative to the convenience yield. Again, we will form a portfolio composed of
underlying commodity and an unspecified number of futures contracts.

Ito’s lemma allows us to define the instantaneous price change of the forwards price
as seen by a nonholder, taking into account the stochastic convenience yield

dF nonholder
t,T = ∂Ft,T

∂S
dSnonholdert + ∂Ft,T

∂t
dt+ 1

2
∂2Ft,T
∂S2 (dSnonholdert,T )2

+∂Ft,T
∂δ

dδt + 1
2
∂2Ft,T
∂δ2 (dδt,T )2 + ∂Ft,T

∂S

∂Ft,T
∂δ

dSnonholdert dδt

Substituting the stochastic spot price model as seen by a nonholder and the stochas-
tic convenience yield model gives

dF nonholder
t,T = {∂F

∂S
[(µ− δt)St] + ∂F

∂t
+ 1

2
∂2F

∂S2 σ
2
1S

2
t

+∂F
∂δ

[k (a− δt)] + 1
2
∂2F

∂δ2 σ
2
2 + ∂2F

∂S∂δ
(Stσ1σ2ρ)}dt

+∂F
∂S

(σ1StdW1) + ∂F

∂δ
(σ2dW2)

The change in the forwards and spot price is substituted into the change in portfolio
value to give
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{∂F
∂S

[(µ− δt)St] + ∂F
∂t

+ 1
2
∂2F
∂S2 σ

2
1S

2
t

+∂F
∂δ

[k (a− δt)] + 1
2
∂2F
∂δ2 σ

2
2 + ∂2F

∂S∂δ
(Stσ1σ2ρ)

−rnSt + nµSt}dt+

∂F∂S + n︸ ︷︷ ︸
∂F
∂S

=−n

σ1StdW1

+∂F
∂δ

(σ2dW2) = 0

(5.3.9)

The stochastic convenience yield model predicts that the value of the futures in a
frictionless market (without transaction costs) absent any risk-free arbitrage must
follow the following partial differencial equation

∂F

∂S
[(r − δt)St] + ∂F

∂t
+ 1

2
∂2F

∂S2 σ
2
1S

2
t + ∂F

∂δ
[k (a− δt) + σ2λ]

+ 1
2
∂2F

∂δ2 σ
2
2 + ∂2F

∂S∂δ
(Stσ1σ2ρ) = 0

where λ is the market price of the convenience yield risk. The derivation was based
on eliminating the risk of stochastic movements in the spot price; however, the
investment is not riskless as the convenience yield risk cannot be hedged away.
The underlying assumption of no-arbitrage implies that the expected return beyond
the risk-fee rate is related to the market price of risk. Risk arises from the stochastic
behavior of the convenience yield [GS90], hence

µF = r +
λ′S ∂F

∂S
σ1

F
+
λ∂F
∂δ
σ2

F
(5.3.10)

where λ′ is the market price per unit of price risk and λ is the market price per unit
of convenience yield risk.

5.4. Schwartz model - Stochastic CY Model

In the 1990s, several mean reversion models were developed to describe the behav-
ior of commodity prices. It well known that the convenience yield changes over
time, but a major advantage was the introduction of a stochastic convenience yield
[Schwartz97]. When supply is high, there is a little convenience or necessity to have
the commodity on hand. When supply is low, the convenience yield will be high
and the spot price will be higher than a long-dated futures contract.
The spot price of the commodity and the instantaneous convenience yield are as-
sumed to follow the joint stochastic process:
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dSt = (µ− δt)Stdt+ σ1StdW1,
dδt = k(a− δt)dt+ σ2dW2,

(5.4.1)

with Brownian motions W1 and W2 under the objective measure P and correlation
dW1dW2 = ρdt.
Under the risk-free pricing measure Q the dynamics are of the form

dSt = (r − δt)Stdt+ σ1StdW̃1,
dδt = [k(a− δt)− λ]dt+ σ2dW̃2,

(5.4.2)

where the constant λ denotes the market price of convenience yield risk and W̃1 and
W̃2 are Q-Brownian motions. It may be handy to introduce a new mean-level for
the convenience yield process under Q

ã = a− λ

k
, (5.4.3)

which leads to the dynamics

dδt = k(ã− δt)dt+ σ2dW̃2. (5.4.4)

5.4.1. Joint Distribution of State Variables

The log-spot Xt = log(St) and the convenience yield δt are jointly normally dis-
tributed. The transition density is

(
Xt

δt

)
∼ N

((
µX(t)
µδ(t)

)
,

(
σ2
X(t) σXδ(t)

σXδ(t) σ2
δ (t)

))
(5.4.5)

with parameters

µX(t) = X0 + (µ− 1
2σ

2
1 − a)t+ (a− δ0)1−e−kt

k

µδ(t)=e−ktδ0+a(1−e−kt)

σ2
X(t) = σ2

2
k2 ( 1

2k (1− e−2kt)− 2
k
(1− e−kt) + t) + 2σ1σ2ρ

k
(1−e−kt

k
− t) + σ2

1t

σ2
δ (t) = σ2

2
2k (1− e−2kt)

σXδ(t) = 1
k
{(σ1σ2ρ− σ2

2
k

)(1− e−kt) + σ2
2

2k (1− e−2kt)}

(5.4.6)

The mean-parameters given in (5.4.6) refer to the P-dynamics. To obtain the pa-
rameters under Q one can simply replace µ by r and a by ã defined in equation
(5.4.3). Let the Q-parameters be denoted by µ̃X(t) and µ̃δ(t).

78



5.4 Schwartz model - Stochastic CY Model

5.4.2. Futures Price

It is worth to mention that the futures and forward price coincide since in our model
the interest rate is assumed to be constant. Let the futures price at time t with time
to maturity τ = T − t be F (St, δt, t, T ).
At time zero the futures price is given by the Q-expectation of ST .

F (St, δt, 0, T ) = EQ(ST ) = exp{µX(T ) + 1
2σ

2
X(T )} = S0e

A(T )−B(T )δ0 (5.4.7)

with

A(T ) = (r − ã+ 1
2
σ2

2
k2 −

σ1σ2ρ

k
)T + 1

4σ
2
2
1− e−2kT

k3

+(kã+ σ1σ2ρ−
σ2

2
k

)1− e−kT
k2

B(T ) = 1− e−kT
k

(5.4.8)

α σ1 σ2 r κ λ ρ

0.0699 0.3630 0.4028 0.0373 1.4221 -0.0183 0.8
Table 5.1.: Calibrated parameters set for WTI [Schwartz97].
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Figure 5.1.: Simulation of the stochastic spot and futures price for the next 5 years
from the parameter set of Table 5.1.
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6. Futures Options

It is more natural to trade options on commodity futures rather than options on the
actual underlying asset. Why would anyone write an option on futures, instead of
writing it on the cash instrument directly?

In fact, the advantages of such contracts are many, and the fact that option contracts
written on futures are the most liquid is not a coincidence. First of all, if one were
to buy and sell the underlying in order to hedge the option positions, the futures
contracts are more convenient. They are more liquid, and they do not require
upfront cash payments. Second, hedging with cash instruments could imply, for
example, selling or buying thousands of barrels of oil.Where would a trader put so
much oil, and where would he get it? Worse, dynamic hedging requires adjusting
such positions continuously. It would be very inconvenient to buy and sell a cash
underlying. Long and short positions in futures do not result in delivery until the
expiration date. Hence, the trader can constantly adjust his or her position without
having to store barrels of oil at each rebalancing of the hedge. Futures are also more
liquid and the associated transactions costs and counterpart risks are much smaller.

Most futures options are American style. Exercising a futures call option gives the
holder possession of the future contract as well as a marked to market cash payment
for the difference between the strike price K and the most recent (e.g. last trading
day’s) futures settlement price Ft−1 − K. Subsequently, the owner can hold the
futures contract or sell the futures contract for the current futures price for a net
profit of Ft − Ft−1

6.1. Futures Risk & Neutral Behavior

The main source of risk in a futures contract is the basis risk. The exchange requires
daily settlement of the futures contract in margin account. When you open a futures
contract, the futures exchange will state a minimum amount of money that you must
deposit into your account. This original deposit of money is called the initial margin.
When your contract is liquidated, you will be refunded the initial margin plus or
minus any gains or losses that occur over the span of the futures contract. In other
words, the amount in your margin account changes daily as the market fluctuates
in relation to your futures contract. The minimum-level margin is determined by
the futures exchange and is usually 5% to 10% of the futures contract.
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In the risk-neutral world, a future behaves similar to a stock with zero drift paying
a dividend at a rate r. The initial entry into futures contract requires no payment.
This mean that the contract has zero value at time zero. At the end of the first
day, the contract is marked to market for a positive or negative payoff of F1 − F0.
Discounting the daily-denominated risk free rate gives the risk-neutral value of the
payoff at time zero as

e−r∆tEQ
0 [F1 − F0] = 0 (6.1.1)

This can be repeated over several time periods to show that the expected drift is
zero

F0 = EQ
0 [F1] = . . . = EQ

0 [FT ] (6.1.2)

in the risk-neutral world where the money market account is the numerate.

6.2. Futures Contract For Constant Interest Rate

The interest rate r is assumed to be normalized to a rate per day. The initial is
zero. At the close of trading on the first day, the mark to market requirement from a
future exchange created a profit (or loss) of F1−F0, which is invested (or borrowed)
at the risk free for the remaining n− 1 days

er(1)︸ ︷︷ ︸
#contracts

(F1 − F0)︸ ︷︷ ︸
mark tomarket

invest n−1 days︷ ︸︸ ︷
er(n−1) = (F1 − F0)er(n) (6.2.1)

Furthermore, at the end of the first day, er more contracts are entered to give a new
total number of contracts of er + er(1) = er(2). At the end of the second trading day,
the mark to market creates a new profit (or loss) of F2 − F1 which is invested (or
borrowed) at the risk free for the remaining n− 2 days

er(2)︸ ︷︷ ︸
#contracts

(F2 − F1)︸ ︷︷ ︸
mark tomarket

invest n−2 days︷ ︸︸ ︷
er(n−2) = (F2 − F1)er(n) (6.2.2)

Again, at the end of the first day, er more contracts are entered to give a new total
number of contracts of er + er(2) = er(3) . Similar streams of investments or loan are
made for each day up to last trading day n. On this last trading day the value is
found by adding all streams
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n∑
i=1

er(2)︸ ︷︷ ︸
#contracts

(F2 − F1)︸ ︷︷ ︸
mark tomarket

invest n−i days︷ ︸︸ ︷
er(n−2) =

n∑
i=1

(Fi − Fi−1)er(n) = (Fn − F0)er(n) (6.2.3)

where the closing futures price must converge to the closing spot price, Fn = ST .
This assumption is called convergence assumption.

6.2.1. Put-Call Parity: Hedging With Futures

An important principle in options pricing is called a put-call parity. It says that
the value of a call option, at one strike price, implies a certain fair value for the
corresponding put, and vice versa. This relationship is expressed in the formula

Vc +Ke−rt = Vp + F0 (6.2.4)

If the parity is violated, an opportunity for arbitrage exists. Our goal is to show that
the value at time t of the fixed-price forward contract for a party that at delivery
pays a fixed price K and receives one unit of the commodity is

Vc(t, Ft) = e−r(T−t)(Ft −K) (6.2.5)

where r is the risk-free rate.
Alternatively, the value of this contract for a party that delivers one unit of the
commodity in exchange for a fixed payment is

Vp(t, Ft) = e−r(T−t)(K − Ft) (6.2.6)

To prove these two equalities we use the delta hedging procedure with hedges applied
at certain times t0, t1, . . . , tn = T . Successful delta hedging is equivalent to the
following equality

V (T, FT ) + er(T−t1)δ0∆F0 + er(T−t2)δ1∆F1

+ . . .+ er(T−ti+1)δi∆Fi = er(T−t0)V (t0, Ft0)

where

δi = ∂V

∂F
(ti, Fti) and ∆Fi = Fti+1 − Fti (6.2.7)
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6.2.2. Delta Hedging

The previous equality is the essence of dynamic or delta hedging with futures: the
asset value at the beginning of hedging period is equal to the asset value plus the
value of the hedges at the end of the period (all adjusted for the accrued interest).
In other words, delta hedging preserves the value of the asset by ensuring that the
value of the portfolio consisting of the asset and the hedges does not change with
time (This is a somewhat idealized picture since we have ignored the transaction
costs associated with hedging, which in general should not be).
Assume now for example that a gas vendor A wants to trade a future contract but
does not agree with the payer’s future contract evaluation Vc (6.2.5), or with the
receiver’s contract value Vp (6.2.6).

Case 1 A is confident that the value at t0 of the receiver’s future contract (A
receives a fixed payment) is greater than the one given by Vp,

V A
p (t0, Ft0) > e−r(T−t0)(K − Ft0). (6.2.8)

So vendor A is willing to pay today V A
p for the right to deliver a commodity in the

future month and to receive a fixed payment K. After entering into the contract
with A, we immediately implement the delta hedging strategy, assuming that Vp is
the correct value of the contract (from our point of view, it is a payer’s contract).
At expiration time T we pay A the fixed payment K, and receive the commodity
that we promptly sell at the spot market for ST . Thus, at expiration our total cash
flow per unit of commodity consists of the following components:

• +ST is the sale of the commodity at the spot market.
• −K is the fixed payment.
• er(T−t0)δ0∆F0 + . . .+ δn−1∆Fn−1 is the futures margin account.
• +er(T−t0)V A

p (t0, Ft0) is the initial payment from A at the inception of the con-
tract.

Our total P&L (Profit & Loss) from the contract is

Π = (ST −K) + er(T−t0)δ0∆F0 + . . .+ δn−1∆Fn−1 + er(T−t0)V A
p (t0, Ft0)

Π = er(T−t0)

V (t0, Ft0) + e−r(T−t0) (Ft0 −K)︸ ︷︷ ︸
>0

 > 0.

Therefore, at expiration we guarantee ourselves a profit regardless of market behav-
ior. We just borrow the necessary cash and repay the debt at expiration. This is
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an arbitrage opportunity and a common assumption is that arbitrage cannot exist
for a long period of time. Indeed, once A will realize that he has overvalued the
contract and allows us to make riskless profit, he will adjust the value.

Case 2 Assume now that the gas vendor A believes that

V A
p (t0, Ft0) < e−r(T−t0)(K − Ft0). (6.2.9)

Thus, if we are interested in entering into a receiver’s contract with A (we receive a
fixed payment), we will be happy to learn that A values this contract lower than we
do. Therefore, A will accept the payment of V A

p (t0, Ft0) for agreeing to receive the
commodity in the specified future month in exchange for paying the fixed payment
K. Here of course we can implement delta hedging, assuming that Vp holds, obtaining
again that Π > 0. This is again an arbitrage opportunity.

6.3. Blacks’s Model For Future Options Pricing

In Black’s model [Black76], the future price is log-normally distributed and based
on the stochastic process

dF = σFdW, (6.3.1)

where σ is the annualized volatility and dW a geometric Brownian motion. The
risk-neutral distribution at expiration of the contracts equivalent to a stock that
pays a dividend yield equal to the risk-free interest rate

ln(FT ) ∼ φ(lnF0 −
1
2σ

2, σ2T ). (6.3.2)

The probability of finding a random variable x, drawn from a Gaussian distribution
of mean µ and variance σ2given by the probability density function (PDF) as

φ(x, µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 = 1
σ
φn
(
x− µ
σ

)
(6.3.3)

where φn(x) = 1√
2πe
− 1

2x
2 is the normalized PDF.

The standard deviation per time step (e.g per day) is σsd = σ
√
T . A normal

probability distribution with a mean of zero (µ = 0) and unity standard deviation,
N(0, 1), is achieved by employing a change of variables

Q = lnV − µ
σsd

. (6.3.4)
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Then the normalized probability is given by

φn(Q) = 1√
2π
e−

Q2
2 (6.3.5)

At time T , the payout from the call option is

E [max(VT −K, 0)] =
ˆ ∞
K

(V −K)φV (V )dV (6.3.6)

Changing the limits of integration under the density function for Q gives

E [max(VT −K, 0)] =
ˆ ∞
Q

(eQω+σsd −K)φQ(Q)dQ (6.3.7)

Solving the first term in the integral gives

(eQω+σsd −K)φQ(Q) = (eQω+σsd) 1√
2π
e−

Q2
2 = 1√

2π
e

2Qσsd+2σsd−Q
2

2

= 1√
2π
e
−(Q−σsd)2+2µ+σ2

sd
2 = eµ+σ2

sd/2φNorm(Q− σsd)

Substituting into the expectation gives

E [max(VT −K, 0)] =
ˆ ∞
Q

(eQω+σsd)φQ(Q)dQ−
ˆ ∞
Q

Kφ(Q)dQ

= eµ+σ2
sd/2
ˆ ∞
Q

φ(Q− σsd)dQ−
ˆ ∞
Q

Kφ(Q)dQ

The integrals are summing the probability of finding a variable from the lower limit
to infinity. Conveniently, the probability Φ(n) of finding a random variable in the
interval (−∞, x) drawn from the standard Gaussian distribution (z ∼ N(0, 1)) is
the normalized cumulative distribution function (CDF) which is given by

Φ(n)(x) =
ˆ x

−∞
φn(s)ds =

ˆ x

−∞

1√
2π
e−

1
2 s

2ds = 1
2

[
1 + erf

(
x√
2

)]
(6.3.8)

where erf is the error function.
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1−
ˆ ∞
Q

φ(Q− σsd)dQ = 1− Φ(n)




Q︷ ︸︸ ︷
lnK − µ
σsd

− σsd


= Φ(n)

−lnK + lnE(V )− σ2
sd

2
σsd

+ σsd



= Φ(n)


d1︷ ︸︸ ︷

ln(E(V )/K) + σ2
sd

2
σsd


the second integral is given by

1−
ˆ ∞
Q

φ(Q)dQ = Φ(n)

−lnK + lnE(V )− σ2
sd

2
σsd



= Φ(n)


d2︷ ︸︸ ︷

ln(E(V )/K)− σ2
sd

2
σsd


From the previous we can take

c = e−rT

F0Φ(n)


d1︷ ︸︸ ︷

ln(E(V )/K) + σ2
sd

2
σsd

−KΦ(n)


d2︷ ︸︸ ︷

ln(E(V )/K)− σ2
sd

2
σsd



 (6.3.9)

More compactly, the call and the put options on futures contracts are written as

c = e−r(T−t)[F0Φ(n)(d1)−KΦ(n)(d2)]
p = e−r(T−t)[KΦ(n)(−d2)− F0Φ(n)(−d1)] (6.3.10)

where t accounts for a non-zero present time. The values of call options on futures
contracts calculated from Black’s model is shown in Figure 6.1.
The Greeks calculate the sensitivity of the derivative price (or portfolio of deriva-
tives). Delta is the rate of change of the option price with respect to the underlying
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Figure 6.1.: European call futures option value as a function of futures price (left)
and time to expiration (right). An OTM option has a time value based on the
probability that the option will finish ITM.

asset. A riskless portfolio is formed with delta shares of the futures contract with
one short on a call option on the futures contract. The gain (loss) from the shorted
call option would be offset by a corresponding loss (gain) in futures contract. This
delta neutrality can only be maintained in a narrow window of futures price, time
to maturity, interest rates, and certain price or time movement, the delta will have
changed by a sufficient amount to require portfolio rebalancing.

6.4. American Options

American options based on stocks as well as futures are the most frequently traded
options in the market. The option for early exercise prevents the development of
a closed form solution. Popular techniques to price American style options are nu-
merical approaches based on finite difference method as we showed in the previous
chapter. An interesting alternative is the Barone-Adesi and Whaley (BAW) model.
BAWmodel is a quadratic approximation method for pricing exchange-traded Amer-
ican call and put options on commodities and commodity futures and is based on
the Black-Scholes model. Finite-difference methods provide similar results but are
more difficult and expensive to use. The BAW model has the advantages of being
fast, accurate and inexpensive to use. Also, it is most accurate for options that will
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Figure 6.2.: The dependence of Delta on futures price (left) and on the time to
expiration (right) within Black’s model

expire in less than one year.
BAW provides an approximation to stocks and commodities with a continuous cost
of carry b, composed of a continuous dividend yield d, convenience yield y, and
storage u, and given by

b = r − d− y + u. (6.4.1)

Usually a stock pays a dividend yield of zero (non-dividend paying) or less than the
risk free rate, d < r; thus, b = r − d > 0. A futures contract has a cost of carry
b = 0. As the cost of carry of a stock is usually higher than the cost of carry (equal
to zero) of a futures contract, an option on future contract for a stock typically
will be worth more than an option on the same stock. When b ≥ r, An American
call option is never exercised early and thus the American call price equals to the
European call price.
A similar trend applies for commodities in which the future call options is higher
than the call option as long as the convenience yield is less than the interest rate,
y < r thus b = r − y > 0. When the stock dividend rate exceeds the risk-free rate,
d > r ⇒ b = r − d < 0, then the futures call option will be worth less than the call
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than the call option. Likewise for a commodity with a large convenience yield, the
call option on the commodity price will exceed the price of the call option on the
futures.

Figure 6.3.: (Up-left) European call futures option value as a function of futures
price. Black-Scholes price for a call, Black-Scholes minimum price cmin, and the
S −K immediate profit lines (up-right) for non-dividend payment, (bottom-left)
for 0 < b < r and (bottom right) zero cost of carry - futures option.

From the above figure the b < r, graph shows that the minimum European price is
less than the early exercise (S −K). Thus, early exercise is possible when the cost
of carry is less than the risk-free rate.

6.4.1. American Option Derivation

An asset or a commodity S is described by the SDE

dS

S
= αdt+ σdW (6.4.2)

where α is the expected relative spot price change. Barone-Adesi and Whaley
[BAW87] assume that a continuous stream of dividend payments d is made on S.
The relationship of the asset or the underlying commodity to the futures price F is
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F = SebT = Se(r−d−y+u)T (6.4.3)

The SDE for the future price is then

dF

F
= (a− b)dt+ σdz (6.4.4)

A portfolio formed by a riskless hedge of a contingent claim V and the stock or sport
price of the underlying commodity gives the PDE

1
2σ

2S2∂
2V

∂S2 + bS
∂V

∂S
− rV + ∂V

∂t
= 0 (6.4.5)

The movement of the option price V is applicable to an American call, American
put, or a European put.

An option on a futures contract can be priced in the same framework. The most
important detail is that the cost to enter into a futures contract is zero and the
cost of carrying a future contract is also zero. Therefore, b = 0 or equivalently the
dividend is d = r. A portfolio formed by a riskless hedge of an option V and the
futures contract gives the following PDE

1
2σ

2F 2∂
2V

∂S2 − rV + ∂V

∂t
= 0 (6.4.6)

with terminal conditions c = (max[0, ST −K]) for a call and p = (max[0, K − ST ])
for a put yields the BS equations for a European option

c = e−rT [SebTΦ(n)(d1)−KΦ(n)(d2)] = Se(b−r)TΦ(n)(d1)−Ke−rTΦ(n)(d2)
p = e−rT [−SebTΦ(n)(−d1) +KΦ(n)(−d2)] = −Se(b−r)TΦ(n)(−d1) +Ke−rTΦ(n)(d2)

d1 = ln(SebT /K)+σ2T
2

σ
√
T

d2 = ln(SebT /K)−σ
2T
2

σ
√
T

(6.4.7)

Similarly the terminal conditions c = (max[0, FT − K] and p = (max[0, K − FT ])
produce Black’s model for futures options (where b=0)

c = e−rT [F0Φ(n)(d1)−KΦ(n)(d2)]
p = e−rT [−F0Φ(n)(−d1) +KΦ(n)(−d2)]

d1 = ln(F0/K)+σ2(T−t)
2

σ
√

(T−t)
d2 = ln(F0/K)−σ

2(T−t)
2

σ
√

(T−t)

(6.4.8)
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6.5. Optimal Exercise

It is well known that the main analytical problem in pricing American options is
the calculation of the optimal exercise boundary . The exercise boundary is the
critical price that separates the continuation region and the exercise region. More
specifically:

S > S∗(t)→ Exercise
S ≤ S∗(t)→ Continue

(6.5.1)

The critical price is a function of time, since the opportunity cost of exercising
changes the closer we come to expiration. The characteristics of the optimal early
exercise policies of American options depend critically on whether the underlying
asset is non-dividend paying or dividend paying (discrete or continuous). We show
that the optimal exercise boundary of an American call, with continuous dividend
yield or zero dividend, is a continuous decreasing function of time of expiry τ

6.5.1. The Barone-Adesi and Whaley Model

American options gives the opportunity for early exercise. This opportunity adds a
premium over the price of a European futures option and described by

ε = CAm(S, T )− cEu(S, T ). (6.5.2)

This additional premium ε will satisfy the same PDE as the American and European
options satisfy

1
2σ

2S2 ∂
2ε

∂S2 + bS
∂ε

∂S
− rε+ ∂ε

∂t
= 0. (6.5.3)

Multiplying the previous PDE (6.5.3) by 2/σ2 and noting ∂ε
∂τ

= −∂ε
∂t

1gives

S2 ∂
2ε

∂S2 + 2b
σ2S

∂ε

∂S
− 2r
σ2 ε−

2
σ2
∂ε

∂τ
= 0. (6.5.4)

Grouping constant factors as M = 2r/σ2 and N = 2b/σ2 gives

S2 ∂
2ε

∂S2 +NS
∂ε

∂S
−Mε− M

r

∂ε

∂τ
= 0. (6.5.5)

Baroni-Adesi and Whaley divide the pricing premium εC of an American call option
into a function of T and function of S and h (time decay)

1Barone-Adesi and Whaley define τ = T − t to evolve from the option expiration to present.
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εC = h(τ)f(S, h), (6.5.6)

with the corresponding derivatives

∂2ε

∂S2 = h
∂2f

∂S2
∂ε

∂S
= h

∂f

∂S

∂ε

∂τ
= ∂h

∂τ
f + h

∂h

∂τ

∂f

∂h
. (6.5.7)

Substituting into the PDE (6.5.5) for the pricing premium and dividing by h

S2 ∂
2f

∂S2 +NS
∂f

∂S
−Mf − M

r

∂h

∂τ

f

h
− M

r

∂h

∂τ

∂f

∂h
= 0. (6.5.8)

Defining the time decay as

h = 1− e−rτ ∂h

∂τ
= re−rτ = r(1− h), (6.5.9)

yields

S2 ∂
2f

∂S2 +NS
∂f

∂S
−Mf − M

r
r(1− h)f

h
− M

r
r(1− h)∂f

∂h
= 0⇒

S2 ∂
2f

∂S2 +NS
∂f

∂S
− M

h
f − (1− h)∂f

∂h
= 0.

The BAW approximation is to assume that the last term is approximately zero for
two reasons: ∂f(τ≈0)

∂h
≈ 0 for an option near expiration, and h(τ ≈ 0) ≈ 1 for a

long-dated option 2.
So the BAW approximate the early exercise premium differential equation as

S2 ∂
2f

∂S2 +NS
∂f

∂S
− M

h
f = 0, (6.5.10)

which is a second order ODE with two linearly independent solutions of the form
aSq. They can be found by substituting f = aSq into (6.5.9)

S2aq(q − 1)Sq−2 +NSaqSq−1 − M

h
aSq = 0 (6.5.11)

aSq[q2 + (N − 1)q − M

h
] = 0 (6.5.12)

2Ju and Zhong [JuZh99] continue the derivation with the last term to produce a numerical solution
with better accuracy for intermediate maturity options.
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The roots of (6.5.12) are

q1 = −(N−1)−
√

(N−1)2+4M
h

2 ,

q2 = −(N−1)+
√

(N−1)2+4M
h

2 ,
(6.5.13)

where M/h > 0, thus q1 < 0 and q2 > 0.
The general solution to the early exercise premium differential equation is

f = a1S
q1 + a2S

q2 (6.5.14)

With q1 and q2 known, a1 and a2 to be determined. Examining the first term, a1S
q1 ,

where q1 < 0, shows that an asset price near zero, S ≈ 0, implies a very large
premium, f = Sq1 ≈ ∞. This is unacceptable since the early exercise premium of
the American call becomes worthless when commodity price drops to zero. Therefore
a1 = 0 and this gives an intermediate expression for the American call option as

CAm = cEu + ha2S
q2 , (6.5.15)

As S = 0, CAm(S, T ) = 0 since both cEu(S, T ) and ha2S
q2 are equal to zero. As S

rises, the value of CAm(S, T ) rises for two reasons: cEu(S, T ) rises and ha2S
q2 rises,

assuming a2 > 0. In order to represent the value of the American call, however,
the function on the right hand side of [9.45] should touch, but not intersect, the
boundary imposed by the early exercise proceeds of the American call, S −K.
Above a critical asset price S∗, the value of the American call option will match the
early exercise proceeds CAm = S − K. At the critical asset price, the investor is
indifferent to exercising the option or holding onto the option. The early exercise
plus the European call should equal to the early exercise proceeds to give the first
constraint

S∗ −K = cEu(S∗, τ) + ha2S
∗q2 . (6.5.16)

A second constraint is to equate the slope of the two lines

1 = e(b−r)TΦ[d1(S∗)] + hq2a2S
∗q2−1, (6.5.17)

where the early exercise proceeds has a slope of one and the slope of the European
call is the Greek delta. There are two equations with two unknowns, a2 and S∗. The
slope equality can be solved for a2 as

a2 = 1− e(b−r)TΦ[d1(S∗)]
hq2S∗q2−1 , (6.5.18)
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which can be substituted into the first constraint to give a master equation for the
critical asset or commodity price

S∗ −K = cEu(S∗, τ) + 1− e(b−r)TΦ[d1(S∗)]
q2

S∗ (6.5.19)

Although S∗ is the only unknown value in equation (6.5.19), it must be determined
iteratively in a computer simulation. With S∗ known, equation (6.5.16) provides
the value of a2. Substituting (6.5.18) into (6.5.15) and simplifying yields

CAm(S, τ) = cEu(S, τ) + A2(S/S∗)q2 , S < S∗,
CAm(S, τ) = S −K, S > S∗,

(6.5.20)

where

A2 = (S
∗

q2
)(1− e(b−r)TΦ[d1(S∗)]) (6.5.21)

Note that A2 > 0 since S∗ are positive when b < r. Equation (6.5.20) is therefore an
efficient analytic approximation of the value of an American call option written on
commodity when the cost of carry is less than riskless rate of interest. When b ≥ r,
the American call will never be exercised early, and valuation of cEu applies.
In equation (6.5.20), it is worthwhile to note that the early exercise premium
of the American call option CAm on a commodity approaches zero as the time
to expiration of the option approaches zero. As T→ 0 , N [d1(S∗)] → 1 and{

1− e(b−r)TN [d1(S∗)]
}
→ 0 , A2 → 0 and thus A2(S/S∗)q2 → 0.

A similar procedure is used to price an American put option. The American put
option is a summation of the European put option and the early exercise premium

PAm(S, τ) = pEu(S, τ) + εP . (6.5.22)

When the asset price is very large, S →∞, the American put early exercise premium
is εP → 0. The positive q2 in the a2S

q2 term creates the opposite and necessitates
that a2 = 0. Therefore, f = a1S

q1and

PAm(S, τ) = pEu(S, τ) + ha1S
q1 . (6.5.23)

Below the critical asset price S∗∗, and the first constraint is that the early exercise
premium plus the European put should equal the early exercise proceeds

K − S∗∗ = pEu(S∗∗, τ) + hS∗∗q1 . (6.5.24)

The quadratic approximation for an American put is
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PAm(S, τ) = pEu(S, τ) + A1(S/S∗∗)q1 , S > S∗∗,
PAm(S, τ) = K − S, S ≤ S∗∗,

(6.5.25)

where

A1 = −(S
∗∗

q1
)(1− e(b−r)TΦ[−d1(S∗∗)]). (6.5.26)

An American put will always possess an early exercise premium as A1 is always
positive.

6.5.2. Critical Asset Price

In the previous section, only one step, the determination of the critical asset price
S∗ is not straightforward. We are interested in minimizing

g(Si, τ) = cEu(S∗, τ) + 1− e(b−r)TΦ[d1(Si)]
q2

S∗ − S∗ +K (6.5.27)

Barone-Addesi and Whaley (1987) implemented a modified Newton-Raphson search
procedure to find the critical asset price.
The Newton-Raphson method finds the slope (the tangent line) of the function at
(x0, g(x0)) and uses the zero of the tangent line as the next reference point. The
process is repeated until the root is found or the convergence criteria are met;

Si+1 = Si −
g(Si)
g′(Si)

, (6.5.28)

with

g
′(Si, τ) = (e(b−r)TΦ[d1(Si)])

(
1− 1

q2

)
+
(

1
q2

)(
1− e(b−r)TΦ[d1(Si)]

σ
√
τ

)
−1. (6.5.29)

The Newton-Raphson method is much more efficient than other "simple" methods
such as the bisection method. However, the Newton-Raphson method requires the
calculation of the derivative of a function at the reference point, which is not always
easy. Furthermore, the tangent line often shoots wildly and might occasionally be
trapped in a loop. The promised efficiency is then unfortunately too good to be true.
It is recommended to monitor the step obtained by the Newton-Raphson method.
When the step is too large or the value is oscillating, other more conservative meth-
ods should be considered.
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6.5.3. Futures Option Quadratic Approximation

Exercising an option on a precious metal or a non-dividend paying stock does not
generate cash flow unless it is sold. In contrast, exercising a futures option generates
a cash flow of F − S as the future is mark to market (daily, monthly etc.). As the
futures option would only be exercised early if F > S, then the profit F − S is
immediately invested (bank account, bond etc.) to yield a profit erτ (F −K) .
Applying the BAW model with b = 0 for a futures call option

CAm(F, τ) = cEu(F, τ) + A1(F/F ∗)q1 , F < F ∗,
CAm(F, τ) = F −K, F > F ∗,

(6.5.30)

where

A1 = (F
∗

q1
)(1− e−rTΦ[d1(S∗)]). (6.5.31)

The future put option is

PAm(F, τ) = pEu(F, τ) + A2(F/F ∗)q2 , F > F ∗∗,
PAm(F, τ) = K − F, F 6 F ∗∗,

(6.5.32)

where

A2 = −(F
∗∗

q2
)(1− e−rTΦ[−d1(S∗∗)]). (6.5.33)
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6.5 Optimal Exercise

Figure 6.4.: Barone-Adesi and Whaley quadratic approximation of an American
futures contract. Above the critical futures price, F ∗, the American call is equal
to the immediate exercise value F −K.
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Figure 6.5.: The critical futures price, F ∗, is a continuous decreasing function of
time of the expiry timr τ . Here we used r = 0.08 and σ = 0.2
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7. Appendix

A.1 Ito’s Lemma

Ito’s lemma is the chain rule for stochastic calculus. Let x(t) follow the differential
equation

dx

dt
= a(x, t). (7.0.1)

Now we consider a function of x(t) and t. We call this function f(x(t), t). Assuming
that f is differentiable we can ask what the derivative of f is. To calculate it, we
simply apply the chain rule

df(x, t)
dt

= ∂f

∂x

dx

dt
+ ∂f

∂t
= fx

dx

dt
+ ft, (7.0.2)

where we are using the notation fx = ∂f
∂x

and ft = ∂f
∂t
. Finally, we can substitute in

for dx
dt

from (7.0.1), giving

df(x, t)
dt

= ∂f

∂x
a(x, t) + ∂f

∂t
= fxa(x, t) + ft. (7.0.3)

This is a fairly straightforward calculation. However, when dealing with stochastic
differential equations, the simple chain rule of ordinary calculus does not work. The
reason is simple. Brownian motion is not differentiable so we can’t really take its
derivative or the derivative of any function of Brownian motion.

Ito’s lemma for Brownian motion

Given the differential of x(t), Ito’s lemma allows us to compute the differential
of a function ofx(t) and t. Hence, it is the ”chain rule” for stochastic differential
equations. The following result is Ito’s lemma when x(t) is a process governed by a
stochastic differential equation driven by Brownian motion.
Lemma: Consider the stochastic differential equation (SDE)

dx = a(x, t)dt+ b(x, t)dW, (7.0.4)
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and let f(x, t) be a twice continuously differentiable function of x and t. Then

df(x, t) = (ft + a(x, t)fx + 1
2b

2(x, t)fxx)dt+ b(x, t)fxdW. (7.0.5)

Heuristic Proof: Consider writing the Taylor expansion of df

df = f(x(t+dt), t+dt)−f(x(t), t) = ftdt+fxdx+ 1
2fxx(dx)2 +fxtdxdt+ . . . (7.0.6)

Now we substitute dx using dx = adt+ bdW which give

df = ftdt+ fx(adt+ bdW ) + 1
2fxx(adt+ bdW )2 + fxt(adt+ bdW )dt+ . . .

= ftdt+ fxadt+ fxbdz + 1
2fxx(a

2dt2 + 2abdtdW + b2dW 2) + fxt(adt2 + bdWdt) + . . .

Now we take a crucial step, and only keep terms up to order dt using the following
logic. The standard deviation of dW is of order

√
dt. Hence, we think of dz as being

of order dt1/2 and only keep terms up to order dt yielding

df = ftdt+ fxadt+ fxbdW + 1
2fxxb

2dW 2 . . . (7.0.7)

Finally we replace dW 2 by it’s expectation dt which leads to Ito’s lemma

df = (ft + afxa+ 1
2b

2fxx)dt+ bfxdW. (7.0.8)

Consequences for Stocks and Options

Suppose the stock price follows a geometric Brownian motion, hence x(t) = St,
a = µdt, b = σSt. The value V of an option depends on St,V = V (St, t). Assuming
C2-smoothness of V depending on S an dt, we apply Ito’s lemma.

dVt =
(
∂V

∂S
µSt + ∂V

∂t
+ 1

2
∂2V

∂S2 σ
2S2

t

)
dt+ ∂V

∂S
σStdW (7.0.9)

This SDE is used to derive the Black-Scholes PDE equation.
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A.2 Derivation of Greeks

In this appendix, we derive formulas for ∆−delta and Γ−gamma. The relatively
lengthy derivation is for delta.
Derivation of Delta

The Black-Scholes formula for a plain vanilla European call expiration T , strike, K,
is given by

c(St, t) = St

ˆ log
St
K

+(r+ 1
2σ

2)(T−t)
σ
√
T−t

−∞

1√
2π
e−

1
2u

2
du

−r−r(T−t)K
ˆ log

St
K

+(r− 1
2σ

2)(T−t)
σ
√
T−t

−∞

1√
2π
e−

1
2u

2
du.

Rearrange and let xt = S−t
Ke−r(T−t) , giving

c(St, t) = Ke−r(T−t)

ˆ
logxt+ 1

2σ
2(T−t)

σ
√
T−t

−∞

1√
2π
e−

1
2u

2
du−

ˆ logxt− 1
2σ

2(T−t)
σ
√
T−t

−∞

1√
2π
e−

1
2u

2
du

 .
(7.0.10)

Now differentiate with respect to xt

dc(xt, t)
dxt

= Ke−r(T−t)

ˆ
logxt+ 1

2σ
2(T−t)

σ
√
T−t

−∞

1√
2π
e−

1
2u

2
du


+ 1
σ
√
T − t

 1√
2π
e
− 1

2

(
logxt+ 1

2σ
2(T−t)

σ
√
T−t

)2
−

 1
xtσ
√
T − t

1√
2π
e
− 1

2

(
logxt− 1

2σ
2(T−t)

σ
√
T−t

)2
The last two terms in this expression sum to zero. To see this, on the right-hand side,
use the substitution: 1

xt
= e−logxtand then rearrange the exponent in the exponential

function. Thus, we are left with

∂c(xt, t)
∂xt

= Ke−r(T−t)

ˆ
logxt+ 1

2σ
2(T−t)

σ
√
T−t

−∞

1√
2π
e−

1
2u

2
du

 (7.0.11)
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Using the chain rule we can obtain

∂c(xt, t)
∂St

=

ˆ
logxt+ 1

2σ
2(T−t)

σ
√
T−t

−∞

1√
2π
e−

1
2u

2
du

 = Φ(d1). (7.0.12)

Derivation of Gamma

Once delta of a European call is obtained, the gamma will be the derivative of the
delta. This gives

∂2c(xt, t)
∂S2

t

= 1
Stσ
√
T − t

1√
2π
e
− 1

2

(
logxt+ 1

2σ
2(T−t)

σ
√
T−t

)2

. (7.0.13)
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