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Abstract
This master thesis aims to solve some of the issues present in the simulation of
the Black-Scholes partial differential equation (PDE) for the pricing problem if
the hyperbolic behavior dominates. Hyperbolic behavior in a convection-diffusion
equation like the Black-Scholes equation causes standard numerical methods to
fail to deliver acceptable approximations. For European options, the hyperbolic
behavior appears when the ratio of the risk-free interest rate and the squared
volatility – known in fluid dynamics as Péclet number – is high. For Asian options,
in addition to present hyperbolic behavior in when the Péclet number is high also
present this behavior in other cases: when the spatial variable is approaching zero
or when the maturity is small.
Three methods to obtain approximations to the Black-Scholes PDE are studied:

the general Exponentially Fitted scheme, a Finite Volume method specially suited
to the Black-Scholes equation, and the Kurganov-Tadmor scheme for a general
convection-diffusion equation. Emphasis is put in the Kurganov-Tadmor scheme
because its flexibility allows the simulation of a great variety of types of options
and because its simplicity in comparison to the Finite Volume method. In addi-
tion to that, the Kurganov-Tadmor scheme exhibits quadratic convergence whereas
the others only linear convergence. To support the claims of flexibility, simplic-
ity and convenience of the Kurganov-Tadmor scheme, extensive experiments and
comparisons are presented with different PDEs and even a nonlinear Black-Scholes
equation.
Due to the characteristics of the Kurganov-Tadmor discretization, exact solution

of the boundary conditions are obtained – when the conditions are itself a PDE –
and implemented into the numerical scheme. For the similarity reduction proposed
by Wilmott, a put-call parity is developed.
According to the author’s knowledge, this is the first time the Kurganov-Tadmor

scheme is applied to option pricing problems. In addition to that, a modification
to the Wang’s finite volume method is proposed as a way to avoid numerical issues
present on the original formulation.
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1. Introduction
The importance of financial options is evident when we take account of the volume
of instruments traded on organized markets during different periods of 2011: in
September, nearly 360 million options on equities were traded on the U.S. market
[OCC11]. If we also include options on indices, futures, etc., we have a total of
400 million contracts and if we sum the contributions of each month starting in
January 2011 up to the end of September 2011, then we found that ∼ 3.5 billion
contracts have been traded.
An option is an instrument in which two parties agree to the possibility to

exchange an asset, the underlying, at a predefined price and maturity. Because of
the stochastic nature of the price of the underlying asset, the profit or loss (P&L)
at maturity is unknown and instead a profile of the P&L is given for a range of
prices; this profile is known as the payoff of the option. There are a great variety
of options ranging from European options, to American, Asian, Barrier options,
Binary options, etc., and many of these instruments are valuated with the pricing
formulae developed by Fischer Black, Myron Scholes and Robert Merton. The
type of the option refers in many cases to the type of payoff profile of the option
but for the European and American option, the type refers to the maturity of
it: the maturity of an European option is fixed whereas the American option can
be exercised at any time before the maturity. In this sense, there exist Asian
options of European and American type, for instance. Despite the simplifications
made in the original formulation – namely, no transaction costs, no arbitrage
opportunities and constant volatility and risk-free interest rate – the Black-Merton-
Scholes mathematical framework is of interest to researchers and practitioners and
can be extended to include, for example, stochastic volatility.
The partial differential equation (PDE) proposed by Black, Scholes and Merton

is known as the Black-Scholes equation and is a particular case of the more general
convection-diffusion equation that also arises in other areas of science like fluid
dynamics. Loosely speaking, the convection diffusion equation can be seen as the
combination of a first order hyperbolic PDE and the diffusion equation. Due to the
hyperbolic term, the solution is a traveling wave transporting the initial condition
(IC) and due to the diffusive term the IC is dissipated: a dissipating traveling
wave. When the diffusion contribution to the solution is small – i.e. the coefficient
is small in comparison to the coefficient of the hyperbolic term – then the solution
behaves, to some extent, as a traveling wave only and the convection-diffusion
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1. Introduction

equation is said to present hyperbolic behavior – also denoted in the literature as
convection-dominated.
For purely first order hyperbolic PDEs, it is known [GRS07] that standard meth-

ods fail to obtain an acceptable approximation when discontinuities are present
in the initial condition and a similar issue is observed on the convection-diffusion
equation under a convection-dominated environment and discontinuous initial con-
dition. Some schemes like the Lax-Friedrichs or the Upwind method were proposed
to obtain satisfactory approximations for hyperbolic PDEs, but artificial diffusion
is introduced by the method which leads to smeared solutions – see [Pul10] for
examples with these schemes.
In terms of the Black-Scholes equation, the hyperbolic behavior appears when

the squared volatility is small in comparison with the risk-free rate. Other PDEs
proposed for the pricing of Asian options, in addition to be convection-dominated
when the ratio of the risk-free rate and the squared volatility is high are also
convection-dominated when the maturity is small or when the spatial variable is
approaching zero.
When solving numerically the Black-Scholes PDE it is useful to transform the

time variable to use the payoff function – known terminal condition – as the initial
condition of the system. Albeit the payoff of an European option is only non-
smooth and the numerical solution for the price is acceptable, artificial oscillations
appear near the strike price when the first numerical derivative with respect to the
underlying price of this approximation is obtained. These oscillations are worst
when higher derivatives are calculated. Having access to the first derivative of the
option price is important to measure the sensitivity of the option to movements
on the price of the underlying or other parameters like volatility. For example, if
the price of the option is denoted as v (s, t) and the price of the underlying as s,
then the elasticity of the option price with respect to the asset price is obtained
as ∂v

∂s
s
v
. Higher derivatives of the option price provide also important information

about the behavior of the option. These quantities are known in the financial
literature as the Greeks. Due to the Greeks being relevant for the quantitative
analysts, reliable numerical methods are required for the pricing of options which
not only provide a good approximation for the price, but also for the derivatives of
the price. In addition to the issues encountered when obtaining the Greeks, some
options, like the Binary type, define discontinuous payoffs which are difficult to
deal with in order to obtain an accurate, reliable approximation to the price.
Three families of options are specially interesting for researchers because they

represent benchmark problems to study: European, American and Asian options.
For plain-vanilla European option, the PDE has one temporal independent variable
and one spatial independent variable – i.e. the underlying price – whereas for an
Asian option an additional spatial variable is introduced into the PDE. The Black-
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Scholes equation has a closed-form solution for the case of a plain-vanilla European
option and for some Asian options but for any other case, numerical methods are
needed.
There are two main alternatives to obtain the price of an option: the price can

be summarized as the discounted expectation at t = 0 of the price of the option
at t = T, i.e. the payoff

v (s, 0) = exp (−rT )E [v (s, T )] ,

and a good alternative to calculate the expectation is simulating repeatedly the
stochastic differential equation that drives the price of the underlying asset. This
method is known as Monte Carlo (MC) simulation and the reasoning behind MC
methods is to perform large simulations that provides the analyst with a mean-
ingful approximation of the expectation of the price of the option. A large compu-
tational effort is needed when using MC methods for the pricing models because
the convergence of the method to the solution is slow, but its simplicity represents
many advantages when the dimensionality of the problem is high. The second
alternative is to use the mathematical model defined by the Black-Scholes equa-
tion and solve it numerically. Solving a PDE numerically has the advantage of a
well studied area – a vast literature is available – and high efficiency in terms of
computational and memory costs when the dimensionality is low: most methods
to obtain approximations to solutions of PDEs have a finite number of operations
and in addition to that, good convergence properties can be achieved. For finite
difference methods a rule of thumb is to consider the dimensionality d of the prob-
lem low when d ≤ 3. This is considered so because, for example, when d = 3
and 500 discretization points are required, then the system matrix is composed of
500×500×500 = 125, 000, 000 elements and, in general, it is a dense matrix which
requires ∼ 1GB in memory when using double-precision floating numbers. When
d > 3 then it is difficult to achieve efficiency with finite difference methods and a
Monte Carlo technique shall be used.
In this work, finite difference methods for the convection-diffusion equation are

presented. Our main purpose is to propose reliable methods for the Black-Scholes
equation with a wide range of parameters, including the convection-dominated
case. Conservative methods, a special family of finite difference methods and
also denoted as Finite Volume methods in the literature, are presented as a the
method of choice to solve convection-dominated problems. Conservative numerical
methods arise in the study of conservation laws and its computational modeling.
Two conservative methods are studied: the Kurganov-Tadmor scheme [KT00], a

high resolution method for a general convection-diffusion equation which exhibits
quadratic convergence and introduces small artificial viscosity in comparison to
other methods like Lax-Friedrichs; and the Wang scheme [Wan04] for an European
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1. Introduction

option in which the flux of the Black-Scholes equation in conservative form is solved
analytically and exhibits linear convergence. We also present the Exponentially
Fitted scheme first proposed by Il’in [Il’69] and then presented in the context of
finance by Duffy [Duf06]. According to the author’s knowledge, this is the first
time the Kurganov-Tadmor scheme is applied to option pricing problems.
This thesis is structured as follows: Section 2 introduces the basis of options

and the general concept of put-call parity along with an expression for the case of
an European option. In Section 3 a standard derivation for the Black-Scholes is
presented alongside with the full PDE for Asian options and a similarity reduction
based on the mentioned full PDE, proposed by Wilmott [WDH94]; a third PDE for
Asian options proposed by Rogers-Shi [RS95] is presented in this section. Based
on the put-call parity for Asian options, we obtained an expression for the put-
call parity for both of the similarity reduction presented. These expressions are
useful to obtain boundary conditions. In Section 4 the finite difference method is
introduced and the concepts of consistency, stability and convergence are outlined.
The derivation of finite differences is based on Taylor expansion of the solution
of the PDE. The concepts of explicit and implicit methods are shown and the
Exponentially Fitted method, the finite volume method and the Kurganov-Tadmor
schemes are presented in a simplified, general manner, following each author’s
derivation. The Section 5 shows the results of solving numerically the Black-
Scholes equation with the methods delineated in Section 4. Simulations with
a fully implicit method, the Exponentially Fitted schemes, Wang’s finite volume
method and Kurganov-Tadmor scheme are shown. Extensive comparisons between
the Kurganov-Tadmor scheme and other existing methods are performed. Our
Conclusions are presented in Section 6. A prototype Matlab code can be found in
Appendix A.

Notation, conventions and simulation times

In finance literature it is common to represent the price of the underlying as S
and the price of an option as V (S, t). In this work, mathematical functions are
stated in lower case letters whereas numerical approximations to those function
are denoted with capital letters. In this sense, the price of an option is denoted
as v (s, t) and its approximation as V n

i ≈ v (si, tn) – c.f. Chapter 4 for a detailed
explanation of how si and tn are defined. On the other hand, sub-script notation
and variable names like r, σ, γ, α, etc, are valid only Chapter-wise.
Simulations on this thesis work were performed on a computer with an Intel

i5 M480 processor and 8GB of Ram with a 64-bit Matlab 2011b under Kubuntu
Linux version 11.04. Execution times must be interpreted within this context.

12



2. Options

2.1. Definition
An option is a financial instrument in which two parties agree to exchange an asset
at a predefined price or strike and date ormaturity. By paying an up-front quantity
– known as the price or premium of the option – the holder of the contract has the
right, but not the obligation, to buy/sell the asset at maturity. The underlying
asset on the contract is typically a stock or a commodity but the possibilities are
immense; for instance, it is possible to create an option with a future or a swap as
the underlying – the latter is called swaption in the financial literature.
An option in which the holder has the right to buy the underlying is a Call

option whereas if the contract gives the holder the right to sell the underlying
then it is denominated as a Put option.
This financial instrument could be used to hedge against unexpected conditions

in the market but also as a trading strategy. For example, a corn producer could
buy a put option in order to protect its production from unfavorable changes on
the price of the commodity. On the other hand, a hedge fund manager, based on
its beliefs, quantitative analyses or knowledge of the market, could use options to
profit from volatility on the prices of certain stock.
The value of a call option from the perspective of the holder at maturity time

is shown in Figure 2.1.1a. The price of the option is denoted as P and the strike
price as K. The x-axis represents the price of the underlying asset whereas the
red line represents the value of the option. If the price of the underlying is less
than the strike price, the option is worthless for the holder because it is possible
to buy the underlying at a lower price, i.e. market price. When the price of the
underlying is greater than K + P then the value of the option increases and the
holder of the option profits from the difference sT − P −K where sT is the price
of the underlying at maturity. In Figure 2.1.1b the payoff of a put option is shown
and in this case the holder profits from the difference K − sT − P . In both cases,
the risk for the holder is limited to the premium of the option, but the profit is
unlimited, theoretically, in the case of a call option and bounded by the strike in
the case of a put option.
Both payoffs in Figure 2.1.1 are referred as long positions on an option. In

financial terminology, going long on a financial instrument is used as a synonym
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2. Options

K K+P

−P

0

(a) Call option.
K−P K

−P

0

(b) Put option.

Figure 2.1.1.: Payoffs of a long position on an option with strike price K and
premium P .

of buying it and therefore benefiting when the price increases. This terminology
applies for a great variety of instruments like futures, options, stocks, commodities,
swaps, bonds, etc.
In contrast to the long positions, short positions on a financial instrument is

synonym of selling it. The payoff for a short position on an option is shown
in Figure 2.1.2. To sell an asset is a simple concept, however, in finance, it is
possible to go short on a stock – or some other instruments – without owning
it by first borrowing the stock from a broker – usually a bank like JPMorgan or
UBS – and then sell it in the market. In addition to that, a naked short sell
refers to the case when a short position is taken without first having borrowed the
financial instrument. Short selling is a risky operation: by going short on a stock,
for example, the borrower could incur in big loses. Nevertheless, the ability to
take short positions or naked short positions gives the market great flexibility to
create instruments for different purposes: creating strategies with long and short
positions on options could help further to hedge against undesired movements on
prices – c.f. Section 2.2.
By looking at Figure 2.1.2 it is evident the inherent risk when taking a short

position on an option, specially for the case of a call in which an unexpected rise
on the price of the underlying could cause considerable loses.
What we have described up to now as an option is known in the financial litera-

ture as European option. Another important type of option is known as American
option which can be exercised at any time before the maturity, but the payoff is
the same as in the case for the European type. A third type are the Asian options
that define a payoff dependent on the average of the price of the underlying.

14



2.2. Strategies with Options

K K+P

0

P

(a) Call option.
K−P K

0

P

(b) Put option.

Figure 2.1.2.: Payoffs of a short position on an option with strike price K and
premium P .

2.2. Strategies with Options
Traders often combine long and short options with different strike price in order
to create option strategies:

• Butterfly: is used when it is expected that the price of the underlying will
remain in the vicinity of K2. The components are: a long call with strike
K1, two short calls with strike K2 and one long call with strike K3, with
K1 < K2 < K3.

• Condor: similar to a butterfly but with a wider range which allows to
contain slightly higher volatilities than the butterfly. The components of the
condor are: long call with strike K1, short call with strike K2, short call with
strike K3 and a long call with strike K4, with K1 < K2 < K3 < K4.

• Straddle: this strategy is used when a high volatility is expected on the price
of the underlying but no directional information is available, i.e. it is unknown
whether it will be an upside or a downside volatility. The components are
just a put and a call with the same strike price.

• Strangle: a major movement is expected with uncertainty on the direction.
The components are a long put with strike K1 and a long call with a strike
price K2, with K1 < K2.

These strategies, payoffs shown in Figure 2.2.1, are just some simple cases that
exemplify how options can be combined to profit or hedge under different mar-
ket conditions. More elaborated instruments can be created when options with
different strike and different maturity are combined.
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K1 K2 K3

−P

0

(a) Butterfly.
K1 K2 K3 K4

−P

0

(b) Condor.

K

−P

0

(c) Straddle.
K1 K2

−P

0

(d) Strangle.

Figure 2.2.1.: Different strategies with options.
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2.3. Put-Call Parity

To obtain a fair price of an option is not an easy task and researchers have worked
extensively in this area to provide different methods and models for the pricing
problem. Assuming an underlying that follows a geometric Brownian motion, the
Black-Scholes equation, introduced in Section 3, is between the most prominent
models for the pricing of an option.

2.3. Put-Call Parity
For the same maturity, strike price and underlying, a relation between the price of
a call and a put option under a frictionless market can be defined. This relationship
is known as the put-call parity and arises from the fact that with combinations of
long/short calls and long/short puts it is possible to create synthetic instruments
with the same payoff as the real ones. For instance, by combining a long call and a
short put on a stock, it is possible to create an instrument with the same payoff as
the underlying, i.e. a synthetic stock; it is also possible to create a synthetic long
call by creating a portfolio of a long put and holding a stock. A relation between
a call and a put in terms of the price of the stock must be fulfilled in order to keep
the arbitrage-free market.
For an European option with maturity T and strikeK and ignoring the premium

of the option, we can create two portfolios to obtain the desired relationship. In
the first portfolio a long call and a short put is held with payoff s−K. The second
portfolio holds a long stock and K bonds with maturity T that pays a unit of
currency at T , achieving a payoff s−K. By arbitrage arguments, these portfolios
must have the same price at time t

vC (s, t)− vP (s, t) = st −Kb (t, T ) , (2.3.1)

where b (t, T ) is the price of the bond with maturity T , v (s, t) the price of the
option and st the price of the stock at t. A constant risk-free interest rate –
required by Black-Scholes – defines the price of the bond as

b (t, T ) = exp (−r (T − t)) ,

which completes relation 2.3.1.
Besides the obvious theoretical and practical importance of the Put-Call parity,

it is also useful in numerical analysis to obtain boundary conditions for pricing
schemes: when the boundary conditions are known only for a put or call, the
unknown boundary conditions for the other instrument can be easily obtained
with equation 2.3.1.
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The Mathematical Model
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3. The Black-Scholes Equation
The Black-Scholes equation is an important mathematical model for the pricing
of financial derivatives. The model assumes the following:

1. The price of the underlying follows a geometric Brownian motion (GMB).

2. Arbitrage-free world, i.e. the price for an asset is the same in all markets.

3. The risk-free interest rate is constant.

4. The volatility of the underlying is constant during the period of the contract.

5. The option is of European type.

Given point 1, the model for the price of the underlying, a GMB, is defined as

dst = µstdt+ σstdWt, (3.0.1)

where Wt is a Wiener process, µ is the drift coefficient and σ is the diffusion
coefficient, both constant. A bond, considered a risk-less investment, follows the
process

dBt = rBtdt. (3.0.2)

Equation (3.0.1) is also known an an Itô process and assuming a function to be
v (st, t) a C2,1 smooth function, we have that v (st, t) follows an Itô process with
the same Wiener process

dv =
(
µs
∂v

∂s
+ ∂v

∂t
+ 1

2σ
2s2∂

2v

∂s2

)
dt+ σs

∂v

∂s
dWt.

By constructing a portfolio with αt shares of the asset and βt shares of bond,
we have that the value of it is

Πt = αtst + βtBt, (3.0.3)

and it is assumed that the portfolio can be rebalanced but no influx or out-flux of
money is allowed, i.e.

dΠt = αtdst + βtdBt,
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3. The Black-Scholes Equation

and substituting equations (3.0.1) and (3.0.2) we get

dΠt = (αtµst + βtrBt) dt+ αtσstdWt.

Our goal when constructing this portfolio is emulating the price of an option,
i.e.

Πt = vt, (3.0.4)
dΠt = dvt,

(αtµst + βtrBt) dt+ αtσstdWt =
(
µs
∂v

∂s
+ ∂v

∂t
+ 1

2σ
2s2∂

2v

∂s2

)
dt+ σs

∂v

∂s
dWt.

By comparison we obtain
αt = ∂v

∂s

and
µs
∂v

∂s
+ βtrBt = µs

∂v

∂s
+ ∂v

∂t
+ 1

2σ
2s2∂

2v

∂s2 , (3.0.5)

where st = s. With equation (3.0.3) and (3.0.4) we obtain an expression for B

s
∂v

∂s
+ βB = v,

βB = v − s∂v
∂s
,

or, equivalently
rβB = rv − rs∂v

∂s
. (3.0.6)

Substituting equation (3.0.6) into (3.0.5) results in the Black-Scholes PDE

∂v (s, t)
∂t

+ 1
2σ

2s2∂
2v (s, t)
∂s2 + rs

∂v (s, t)
∂s

− rv (s, t) = 0, (3.0.7)

in the interval s ∈ [−∞,∞] and for t ∈ [0, T ]. The parameters are listed in Table
3.1.
For a call option, the boundary conditions can be expressed as

v (0, t) = 0,
v (s, t) → s exp (−d (T − t))−K exp (−r (T − t)) , for s→∞,

and the terminal condition is defined as

v (s, T ) = (s−K)+ . (3.0.8)
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3.1. Asian Options

Parameter
r: Continuously compounded, annualized risk-free rate.
σ: Volatility of the stock price.
s: Stock price.
K: Strike price.
T : Maturity.

Table 3.1.: List of parameters for the Black-Scholes equation.

with the notation (a)+ := max (a, 0)
For a put option, the boundary conditions are

v (s, t) = K exp (−r (T − t))− s exp (−d (T − t)) , for s→ 0
v (s, t) = 0, for s→∞,

and the terminal condition is defined as

v (s, T ) = (K − s)+ . (3.0.9)

The boundary and terminal conditions fully define the problem (3.0.7) for the
function v (s, t).

Multidimensional Black-Scholes Equation

The general n-factor model is described by the process

dSi = (µi − δi)Sidt+ σiSidW
(i), i = 1, . . . , n,

E
(
dW (i)dW (j)

)
= ρijdt, i, j = 1, . . . , n,

where ρij is the correlation between the asset i and asset j, and δi denotes the
dividend flow paid by the ith asset. The Black-Scholes type PDE of the model is

∂V

∂t
+ 1

2

n∑
i,j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+

n∑
i=1

(r − δi)Si
∂V

∂Si
− rV = 0

3.1. Asian Options
An Asian option is a specific type of so-called path-dependent options in which
the payoff is determined by the average of the price of the underlying instrument.
The price of an Asian option is then denoted as v (s, a, t) where a (t) is the average
of s.
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3. The Black-Scholes Equation

The concept of Asian options was motivated as a way to further reduce the
risk of market manipulation on the price of the underlying asset. For example,
an issuer of a plain-vanilla European option with a stock as underlying could be
exposed to induced price movements at maturity leading to loses. On the other
hand, a company or financial institution looking to hedge certain asset is exposed
to steep movements on its price. Although steep movements could not be common
on the stock market – on normal market conditions – it is common to experience
unexpected changes in the commodity market in a matter of days: gold prices went
from ∼ 1800 to ∼ 1600 USD in just five days during September 2011 [KIT11]. An
hypothetical gold mining company using options to hedge its production could be
less vulnerable to volatility by using an Asian option instead of an American or
European one.
By using the continuous arithmetic average over the interval [0, t], then

a (t) := 1
t

ˆ t

0
s (τ) dτ ;

the equation (3.0.7) must be modified to include the new term. The inclusion of
the average a (t) leads to a new dimension. The pricing equation is

∂v

∂t
+ 1

2σ
2s2∂

2v

∂s2 + rs
∂v

∂s
− rv + 1

t
(s− a) ∂v

∂a
= 0, (3.1.1)

with the following payoff or terminal condition:

for a call
(a−K)+ fixed strike,

(s− a)+ floating strike,

for a put
(K − a)+ fixed strike,

(a− s)+ floating strike.

The boundary condition for (3.1.1) at s = 0 is

∂v

∂t
− a

t

∂v

∂a
− rv = 0,

whereas for s→∞ is
∂v

∂t
+ 1
t

(s− a) ∂v
∂a

= 0.

From equation (3.1.1) it can be observed that there are no diffusion terms for
a (t), i.e. purely hyperbolic behavior is expected in that direction.
The put-call parity for an Asian option takes the form

vC − vP = s− s

rT
[1− exp (−r (T − t))]− exp (−r (T − t)) 1

T

ˆ t

0
s (τ) dτ. (3.1.2)
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3.1. Asian Options

3.1.1. The Wilmott Similarity Reduction
It is possible to reduce the full PDE for Asian options (3.1.1) to one spatial and
one temporal dimension by using a similarity reduction proposed by Wilmott
[WDH94].
Let us consider the floating strike payoff of a call option

(s− a)+ = s

(
1− 1

st

ˆ t

0
s (τ) dτ

)
,

and by letting

x = 1
s

ˆ t

0
s (τ) dτ, (3.1.3)

it is possible to define the separation ansatz v (s, a, t) = s · y (x, t). Substituting
this ansatz into (3.1.1) we get

∂y

∂t
+ 1

2σ
2x2 ∂

2y

∂x2 + (1− rx) ∂y
∂x

= 0, (3.1.4)

with the terminal condition

y (x, T ) =
(

1− 1
T
x
)+

. (3.1.5)

The boundary conditions for a call are easily obtained by observing the limits
of (3.1.4). For example for x = 0, the equation (3.1.4) is

∂y

∂t
+ ∂y

∂x
= 0, (3.1.6)

because, assuming y (x, t) is bounded, it is possible to show that the term

x2 ∂
2y

∂x2 → 0 for x→ 0,

whereas for the case of x → ∞ it can be seen from the payoff (3.1.5) that the
option is not exercised, therefore

y = 0. (3.1.7)

This PDE for Asian options is advantageous, computationally speaking, because
we handle only one spatial and one temporal dimension in contrast to the full
expression (3.1.1) which requires two spatial and one temporal dimension leading
to considerably higher computational costs and higher memory requirements.
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3. The Black-Scholes Equation

With the ansatz v (s, a, t) = s · y (x, t), the put-call parity takes the form

yC − yP = 1− 1
rT

[1− exp (−r (T − t))]− exp (−r (T − t)) 1
sT

ˆ t

0
s (τ) dτ,

yC − yP = 1− 1
rT

[1− exp (−r (T − t))]− exp (−r (T − t)) x
T
,

where the definition of the new independent variable 3.1.3 was used in the last
part.
In financial literature the ansatz is denoted as v (s, a, t) = s ·H (R, t) and

∂H

∂t
+ 1

2σ
2R2∂

2H

∂R2 + (1− rR) ∂H
∂R

= 0,

however, to avoid confusion with the numerical flux defined in Section 4.8, we
chose a different notation.
A drawback of the reduction is that it is only possible reduce the PDE for the

case of a floating strike options.

3.1.2. The Rogers-Shi Reduction
An alternative PDE was presented in [RS95] using a scaling property of the GMB.
A new variable is defined as

x = 1
s

[
K −

ˆ t

0
s (τ)µ (dτ)

]
,

with µ as probability measure with density ρ (t) such that

ρ (t) =


1
T
, for a fixed strike option,

1
T
− δ (T − τ) , for a floating strike option,

where in the case for a floating strike option, K must be set to zero.
The proposed PDE is

∂w

∂t
+ 1

2σ
2x2∂

2w

∂x2 − (ρ (t) + rx) ∂w
∂x

= 0

with the following terminal condition for a fixed strike call option

w (x, T ) = min (0, x) =: (x)− , (3.1.8)

and for a floating strike put option

w (x, T ) = (1 + x)− . (3.1.9)

26



3.1. Asian Options

Boundary conditions are defined depending on the type of payoff. For a fixed
strike call we have that

w (x, t) = exp (r (T − t))− 1
r

− x, for x < 0,

and from the payoff (3.1.8) we obtain the boundary

w (x, t) = 0 for x→∞.

On the other hand, for a floating strike put we have that

w (x, t) = exp (r (T − t))− 1
rT

− exp (r (T − t))− x, for x� 0

and, again, from the corresponding payoff (3.1.9) it is possible to obtain the other
boundary

w (x, t) = 0 for x > −1.
The price of the option is then s0w (K/s0, 0) for the case of a fixed strike option

and s0w (0, 0) for the case of a floating strike, where s0 is the current price of the
underlying.
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Part III.

Numerical Aspects
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4. Finite Difference Methods
Finite difference methods (FDM) are simple yet powerful techniques to solve PDEs
numerically. In FDM the PDE’s partial derivatives are replaced by discrete approx-
imations obtained via Taylor expansions. An error is introduced by the truncation
of the infinite Taylor series, but the main goal is to maintain this error bounded
and low. Consistency, stability and convergence are required for a method to be
considered useful.

4.1. Fundamentals of FDM
Without loss of generality, let us consider a function with one spatial variable and
one temporal variable u (x, t). Its pointwise approximation is Un

i := u (xi, tn) + ε
where ε is the truncation error.
The space of integration is divided in discrete points and the Taylor expansion

evaluated on these grid points. In this thesis we prefer to divide the space in N+2
grid points such that

a = x0 < x1 < x2 < · · · < xN < xN+1 = b,

where x ∈ [a, b], while it is preferred that the temporal variable t ∈ [0, T ] is
discretized in M grid points such that

0 = t1 < t2 < · · · < tM = T,

but in some cases it will be convenient to have the time variable defined as t∗ =
T − t, therefore

T = t1 > t2 > · · · > tM = 0.

For the case of Dirichlet boundary conditions x0 and xN+1 represent known
boundary conditions, i.e.

u (a, t) = ga (t) ,
u (b, t) = gb (t) ,
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4. Finite Difference Methods

whereas for the von Neumann boundary conditions, the derivative of the function
is known

∂u (a, t)
∂x

= α1 (t) ,

∂u (b, t)
∂x

= α2 (t) .

Depending on the PDE, we may also need to prescribe a initial condition of the
form

u (x, 0) = gt (x) .

Finally, we define a step-size for each dimension as the distance between grid
points

∆x = b− a
N + 1 , (4.1.1)

∆t = T

M − 1 . (4.1.2)

In numerical analysis, it is common to denote the truncation error with the
Landau symbols – sometimes know as the big-O notation: let f and g be two
functions of the continuous, real variable x defined on a subset of R. If

f (x) ≤ Cg (x) as x→ 0,

for some constant C independent of x, then we write f (x) = O (g (x)).
For instance, the infinite Taylor expansion for u (x+ ∆x, t) is

u (x+ ∆x, t) = u (x, t) + ∆x∂u (x, t)
∂x

+ 1
2∆x2∂

2u (x, t)
∂x2 + 1

3!∆x
3∂

3u (x, t)
∂x3 + · · · ,

which is computationally intractable. Instead, an approximation is defined up to
a certain order

u (x+ ∆x, t) = u (x, t) + ∆x∂u (x, t)
∂x

+O
(
∆x2

)
.

In this sense, the big-O notation defines an upper limit for the terms that are
truncated, i.e.

1
2∆x2∂

2u (x, t)
∂x2 + 1

3!∆x
3∂

3u (x, t)
∂x3 + · · · ≤ C

∣∣∣∆x2
∣∣∣ ,

where C is a positive, small, real number that do not depend on x.
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4.1. Fundamentals of FDM

4.1.1. Discrete First Derivative
Again, without loss of generality, the first partial derivative of a function u (x, t)
with respect to x is considered. Obtaining the Taylor expansion for the function
u at x+ ∆x we get

u (x+ ∆x, y) = u (x, t) + ∆x∂u (x, t)
∂x

+ 1
2∆x2∂

2u (x, t)
∂x2 + 1

3!∆x
3∂

3u (x, t)
∂x3 + · · ·

= u (x, t) + ∆x∂u (x, t)
∂x

+O
(
∆x2

)
, (4.1.3)

or, rearranging

∂u (x, t)
∂x

= u (x+ ∆x, t)− u (x, t)
∆x +O (∆x) . (4.1.4)

The expression (4.1.4) is a first-order approximation for the first partial deriva-
tive. A second-order approximation is achieved by subtracting

u (x−∆x, t) = u (x, t)−∆x∂u (x, t)
∂x

+ 1
2∆x2∂

2u (x, t)
∂x2 − 1

3!∆x
3∂

3u (x, t)
∂x3 + · · ·

(4.1.5)
from (4.1.3), yielding

u (x+ ∆x, t)− u (x−∆x, t) = 2∆x∂u (x, t)
∂x

+O
(
∆x3

)
and then solving for the desired term we get

∂u (x, t)
∂x

= u (x+ ∆x, t)− u (x−∆x, t)
2∆x +O

(
∆x2

)
. (4.1.6)

By dropping higher order terms in (4.1.4) and (4.1.6) a Finite Difference ap-
proximation for the first derivative is obtained

∂u (xi, tn)
∂x

≈
Un
i+1 − Un

i

∆x

and
∂u (xi, tn)

∂x
≈
Un
i+1 − Un

i−1
2∆x .

Requirements of smoothness for the function u (x, t) to obtain an approximation
for the first derivative are u ∈ C2 ([a, b]) for the first-order approximation and
u ∈ C3 ([a, b]) for the second-order approximation.
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4. Finite Difference Methods

4.1.2. Discrete Second Derivative
Without loss of generality now we consider the second derivative of u (x, t) with
respect to x. We follow a similar technique as the one used for the second-order
first derivative. In this case, we sum (4.1.3) and (4.1.5)

u (x+ ∆x, t) + u (x−∆x, t) = 2u+ ∆x2∂
2u

∂x
+O

(
∆x4

)
.

The approximation is then

∂2u (xi, tn)
∂x2 ≈

Un
i+1 − 2Un

i + Un
i−1

∆x2 , (4.1.7)

which is also of second order. Here, the function u (x, t) is assumed to be smooth
enough to obtain the approximation (4.1.7), namely u ∈ C4 ([a, b]).

4.1.3. Discrete Mixed Derivative
We can obtain the mixed derivative of a function u (x, t) in several ways. For
example, with the expression

∂2u (x, t)
∂t∂x

= ∂

∂t

(
∂u (x, t)
∂x

)

and the second-order approximation (4.1.6) for the first derivative

∂2u (xi, tn)
∂t∂x

≈ ∂

∂t

(
u (xi+1, t)− u (xi−1, t)

2∆x

)
|t=tn

≈ 1
4∆x∆t

(
Un+1
i+1 − Un−1

i+1 − Un+1
i−1 + Un−1

i−1

)
which is of second order in space and time. For more options to discretize mixed
derivatives see [GRS07].

4.2. Consistency, Stability and Convergence
A numerical method is considered useful when certain properties are present with
respect to the exact solution of the PDE we are studying. In most of the cases we
do not have an exact solution to compare with but we can define these properties
for a benchmark problem with a known solution and then generalize to other cases.
In this section we work with a general PDE of the form

Lu (x) = 0,
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4.2. Consistency, Stability and Convergence

where L is a differential operator and Ui an approximation to the solution at u (xi).
The global error is defined as

e (xi) = |u (xi)− Ui| ,

and the local error as

τ (xi) = |Lu (xi)− L∆xu (xi)| ,

where L∆x is a discretized differential operator.
A numerical method can be seen as a series of structured computations that

transform the initial condition into the approximation to the solution. A desir-
able and important property is that the round-off and truncation errors are kept
bounded during the series of steps in order to obtain a reasonable solution. This
property is called the stability of the scheme. In the case of PDEs with constant
parameters, the von Neumann stability analysis is an important tool to study the
so-called growth factor of numerical schemes – c.f. Section 4.2.1. With the von
Neumann analysis it is possible to obtain relations in terms of the step sizes in
order to fulfill the stability condition. As an example we can see the condition
imposed on explicit methods in Section 4.3 to achieve a stable scheme.
A discretized differential operator L∆x is called consistent if the local error fulfills

lim
∆x→0

τ (xi) = 0

uniformly in x ∈ [a, b], or is consistent of order p if

τ (xi) = O (∆xp)

uniformly in x ∈ [a, b]. The local error describes how well the exact solution
satisfies the discretized differential operator.
A numerical method is convergent if the global error satisfies

lim
∆x→0

[
max
xi∈[a,b]

e (xi)
]

= 0

or is convergent of order p if

max
xi∈[a,b]

e (xi) = O (∆xp) .

The convergence is a rather important property: we can obtain an approximation
to the solution and improve it to obtain a desired error tolerance, even for the
cases when the analytic solution is unknown. Moreover, the convergence provides
information on how fast the error will decrease when ∆x is diminished; for instance,
if p = 2 and we double the number of grid points, then the error will decrease by
an order of 4. This property was used by Courant, Friedrichs and Lewy to prove
the existence of solutions of PDEs [CFL28].
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4. Finite Difference Methods

Theorem. Lax-Richtmyer Equivalence. A consistent finite difference scheme
for a partial differential equation for which the initial value problem is well-posed
is convergent if and only if it is stable [Str89].

For some finite difference schemes, the proof of convergence is much harder
than the proof for consistency and stability, but Lax-Richtmyer theorem implies
convergence when a scheme fulfills both consistency and stability.
When relying on Lax-Richtmyer theorem to prove a scheme convergent, no in-

formation on the order of convergence p is available, but it is possible to obtain an
empiric or computational order of convergence by observing how the error decreases
when the grid is made finer.

4.2.1. The von Neumann Stability analysis
The von Neumann analysis is useful to verify the stability of linear discretization
schemes by expressing the approximation in terms of its Fourier modes

Un
i =

∑
ϕ

cnϕ exp (jϕi∆s) ,

where j2 = −1 is the imaginary unit and ϕ represents the wave number. For linear
PDEs we can restrict our considerations to one Fourier mode

Un
i = cnϕ exp (jϕi∆s) . (4.2.1)

We are interested in investigating the growth of the error of the approximation
from a time step t1 to a time step t2 where t1 < t2. Defining the growth factor as

Gϕ =
ct2ϕ
ct1ϕ
,

it follows that the scheme is stable if |G| ≤ 1.

4.3. Explicit Methods
Let us now consider the initial-boundary value problem (IBVP) defined by the
one-dimensional heat equation supplied with Dirichlet boundary conditions

∂u (x, t)
∂t

= ∂2u (x, t)
∂x2 , (4.3.1)

u (x, 0) = u0 (x) , (4.3.2)
u(a, t) = ga (t) , (4.3.3)
u(b, t) = gb (t) , (4.3.4)
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4.3. Explicit Methods

where x ∈ [a, b] and t ∈ [0, 1].
Following the techniques from Section 4.1 a discrete expression of equation

(4.3.1) is achieved by substituting the derivatives with the discrete approxima-
tions obtained in the last sections:

Un+1
i − Un

i

∆t = Un
i−1 − 2Un

i + Un
i+1

∆x2 , (4.3.5)

and rearranging the terms, it is possible to express the new approximation Un
i in

terms of known quantities:

Un+1
i = Un

i + ∆t
∆x2

(
Un
i−1 − 2Un

i + Un
i+1

)
,

Un+1
i = rUn

i−1 + (1− 2r)Un
i + rUn

i+1, with r = ∆t
∆x2 . (4.3.6)

The method (4.3.6) is of order two in space and order one in time.
Expressing the explicit method as a system of equations leads to

Un+1 = AeU
n,

where the system matrix Ae reads

Ae =


(1− 2r) r

r
. . . . . .
. . . r

r (1− 2r)

 ∈ RN×N

and Un = (Un
1 , U

n
2 , . . . , U

n
N)ᵀ, where points x0 and xN+1 are excluded because of

known boundary conditions. The explicit method is very economical in terms of
computational complexity because only a matrix-vector multiplication is required
on each time step and in addition to that, the matrix Ae is tridiagonal and therefore
the matrix-vector multiplication computational effort is O (N).
Nonetheless, using the von Neumann analysis we can prove that the explicit

method is stable only for certain values of the parabolic mesh ratio r. Replacing
the ansatz (4.2.1) into equation (4.3.6) we get

cn+1
ϕ exp (jϕi∆s) = rcnϕ exp (jϕ (i− 1) ∆s) + (1− 2r) cnϕ exp (jϕi∆s)

+ rcnϕ exp (jϕ (i+ 1) ∆s) ,

dividing by exp (jϕi∆s) leads to

cn+1
ϕ = cnϕ [r exp (−jϕ∆s) + (1− 2r) + r exp (jϕ∆s)] ,

= cnϕ [1− 2r (1− cos (ϕ∆s))] ,
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4. Finite Difference Methods

and hence the growth factor is

Gϕ =
cn+1
ϕ

cnϕ
= 1− 2r (1− cos (ϕ∆s)) .

The term 1−cos (ϕ∆s) ∈ [0, 2] and therefore we need r ≤ 1/2, so that |Gϕ| ≤ 1.
This is a rather restrictive condition, typical for explicit schemes. It means that
∆t ∼ ∆x2, which requires a high computational effort for cases when ∆x is small.

4.4. Implicit Methods
The discretization of the problem (4.3.1)-(4.3.4) was done with respect to the point
Un
i for the spatial derivative. If instead we use the point Un+1

i then an implicit
method is achieved

Un+1
i − Un

i

∆t = Un+1
i−1 − 2Un+1

i + Un+1
i+1

∆x2

−rUn+1
i−1 + (1 + 2r)Un+1

i − rUn+1
i+1 = Un

i (4.4.1)

It is possible to express the scheme (4.4.1) as a linear system

AiU
n+1 = Un

where

Ai =


(1 + 2r) −r
−r . . . . . .

. . . −r
−r (1 + 2r)

 ∈ RN×N

and Un is defined as in Section 4.3.
Using the von Neumann analysis we can show that the method (4.4.1) is uncon-

ditionally stable. Replacing the ansatz (4.2.1) into (4.4.1) we have

−rcn+1
ϕ exp (jϕ (i− 1) ∆s) + (1 + 2r) cn+1

ϕ exp (jϕi∆s)
−rcn+1

ϕ exp (jϕ (i+ 1) ∆s) = cnϕ exp (jϕi∆s) ,

dividing by exp (jϕi∆s) leads to

cnϕ = cn+1
ϕ [−r exp (−jϕ∆s) + (1 + 2r)− r exp (jϕ∆s)] ,

= cn+1
ϕ [1 + 2r (1− cos (ϕ∆s))] ,

= cn+1
ϕ

[
1 + 4r sin2

(
ϕ∆s

2

)]
.
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4.5. Crank-Nicolson Methods

The growth factor is then

Gϕ =
cn+1
ϕ

cnϕ
= 1

1 + 4r sin2
(
ϕ∆s

2

) ,
where it is easy to see that |Gϕ| ≤ 1 for all r.

4.5. Crank-Nicolson Methods
The Crank-Nicolson scheme can be seen as an average of the explicit and the
implicit method in space and the trapezoidal rule in time. In this sense, the
discretization for the PDE (4.3.1)-(4.3.4) is

Un+1
i − Un

i

∆t = 1
2

[
Un
i−1 − 2Un

i + Un
i+1

∆x2

]
+ 1

2

[
Un+1
i−1 − 2Un+1

i + Un+1
i+1

∆x2

]

which is order two in time and space. Rearranging the terms, we get

−rUn+1
i−1 + 2 (1 + r)Un+1

i − rUn+1
i+1 = rUn

i−1 + 2 (1− r)Un
i + rUn

i+1

or expressed in matrix form

AcnU
n+1 = BcnU

n

with

Acn =


2 (1 + r) −r
−r . . . . . .

. . . −r
−r 2 (1 + r)

 ∈ RN×N ,

Bcn =


2 (1− r) r

r
. . . . . .
. . . r

r 2 (1− r)

 ∈ RN×N .

Let us note that the Crank-Nicolson scheme is just a special case of the more
general θ−Method

Un+1
i − Un

i

∆t = θ

[
Un
i−1 − 2Un

i + Un
i+1

∆x2

]
+ (1− θ)

[
Un+1
i−1 − 2Un+1

i + Un+1
i+1

∆x2

]
. (4.5.1)

The Crank-Nicolson method is also unconditionally stable.
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4. Finite Difference Methods

4.6. Exponentially Fitted Schemes
In this section we consider schemes for the initial-boundary PDE of the form

∂u

∂t
− ε∆u+ b∇u+ cu = f, (4.6.1)

where the data are scaled in such a way that ‖f‖∞ , ‖b‖∞ and ‖c‖∞ are all O (1)
while 0 < ε � 1 [GRS07]. Equation (4.6.1) is known as the convection-diffusion
equation and is said to be convection-dominated or singularly perturbed because
as ε→ 0, classical numerical schemes to obtain u do not converge pointwise to the
solution of the related problem when ε = 0 or require an extremely fine mesh.
Let us set b = constant, c = 0, f = 0 and u := u (x) in equation (4.6.1) such

that
− εd

2u

dx2 − b
du

dx
= 0, (4.6.2)

with x ∈ [0, 1], corresponding boundary conditions u (0) = 0 and u (1) = 1 and
exact solution

u (x) =
1− exp

(
− bx

ε

)
1− exp

(
− b
ε

) . (4.6.3)

The discretization of equation (4.6.2) is

− εUi+1 − 2Ui + Ui−1

∆x2 − bUi+1 − Ui−1

2∆x = 0 (4.6.4)

with the grid and ∆x defined as in Section 4.1. It can be shown [Roo94] that a
very stringent condition is required for convergence, namely

∆x < 2ε
b
. (4.6.5)

The exact solution for the difference equation (4.6.4) is

Ui =
1−

(
2ε−b∆x
2ε+b∆x

)i
1−

(
2ε−b∆x
2ε+b∆x

)N+2 ,

where boundary conditions are fulfilled: U0 = 0 and UN+2 = 1. It is easily observed
that if the condition (4.6.5) is not taken into account, the difference equation will
never converge to the exact solution. For instance, if we let b∆x = 2ε then Ui = 1
for all i.
If instead of using the second-order approximation for the first derivative, the

first-order approximation is used, then the discretization for (4.6.2) is

−εUi+1 − 2Ui + Ui−1

∆x2 − bUi+1 − Ui
∆x = 0,
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4.6. Exponentially Fitted Schemes

with solution

Ui =
1−

(
ε

ε+b∆x

)i
1−

(
ε

ε+b∆x

)N+2 .

Nevertheless, this scheme also shows difficulties approximating the true solution.
Let us take ε = b∆x and obtain the value for U1 which is equivalent to u (x0 + ∆x)

U1 =
1
2

1−
(

1
2

)N+1 = 1
2 (1− 2−N−2) = 1

2− 2−1/∆x
,

whereas the exact solution (4.6.3) is

u (x0 + ∆x) = 1− exp (−1)
1− exp

(
− 1

∆x

) .
By letting ∆x→ 0 or, equivalently N →∞, we encounter further issues:

lim
∆x→0

(u (x0 + ∆x)− U1) = 1
2 − exp (−1) ≈ 0.13212,

i.e. even if ∆x is arbitrarily small, the error of the approximation is very big.
The behavior of the numerical approximation of the PDE (4.6.2) is because the

solution has a boundary layer at x = 0; this is a small region in which the solution
changes rapidly if ε is small. This behavior is illustrated in Figure 4.6.1.
In Figure 4.6.2 we plot u (x, ε) in order to visualize how the boundary layer

steepens as ε → 0, to the point in which the solution is discontinuous at ε = 0.
This characteristic of the solution causes major issues when obtaining numerical
approximations for the equation (4.6.1) with standard methods.
Il’in proposed in [Il’69] to introduce the so-called fitting factor ρ to the difference

equation (4.6.4)

−ρεUi+1 − 2Ui + Ui−1

∆x2 − bUi+1 − Ui−1

2∆x = 0,

and require that the exact solution (4.6.3) also satisfy the difference equation, i.e.

ρε
1− exp

(
− b(x+∆x)

ε

)
− 2

(
1− exp

(
− bx

ε

))
+ 1− exp

(
− b(x−∆x)

ε

)
∆x2

+b
1− exp

(
− b(x+∆x)

ε

)
− 1 + exp

(
− b(x−∆x)

ε

)
2∆x = 0,

ρε
− exp

(
− b(x+∆x)

ε

)
+ 2 exp

(
− bx

ε

)
− exp

(
− b(x−∆x)

ε

)
∆x2

+b
− exp

(
− b(x+∆x)

ε

)
+ exp

(
− b(x−∆x)

ε

)
2∆x = 0;
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Figure 4.6.1.: Boundary layer at x = 0 with b = 1 and ε = 0.05.

Figure 4.6.2.: Surface for u (x, ε).
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we should note that the term 1− exp
(
− b
ε

)
was factored out in the last two equa-

tions. By dividing by exp
(
− bx

ε

)
we get

ρε
− exp

(
− b∆x

ε

)
− 2− exp

(
b∆x
ε

)
∆x2 + b

− exp
(
− b∆x

ε

)
+ exp

(
b∆x
ε

)
2∆x = 0,

and defining ζ = b∆x/ε

ρε
− exp (−ζ) + 2− exp (ζ)

∆x2 + b
exp (ζ)− exp (−ζ)

2∆x = 0;

solving for ρ

ρε
exp (−ζ)− 2 + exp (ζ)

∆x2 = b
exp (ζ)− exp (−ζ)

2∆x
ρ (exp (−ζ)− 2 + exp (ζ)) = 1

2
b∆x
ε

(exp (ζ)− exp (−ζ))

ρ cosh (ζ) = 1
2ζ sinh (ζ) + ρ.

With the trigonometric identities

sinh (2x) = 2 sinh (x) cosh (x) ,
cosh (2x) = 2 sinh2 (x) + 1,

the following expression is obtained

ρ

(
2 sinh2

(
ζ

2

)
+ 1

)
= 1

2ζ
(

2 sinh
(
ζ

2

)
cosh

(
ζ

2

))
+ ρ

ρ sinh2
(
ζ

2

)
= 1

2ζ sinh
(
ζ

2

)
cosh

(
ζ

2

)

ρ = 1
2ζ coth

(1
2ζ
)
.

Il’in proved that the fitted schemes are uniformly convergent in the discrete
maximum norm, i.e.

max
i
|u (xi)− Ui| ≤ C ·∆x,

with a constant C that it is independent of ε and ∆x.
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4. Finite Difference Methods

4.7. Finite Volume Methods
Finite Volume Methods (FVMs) are a special type of FDM derived on the basis of
the integral form of the conservation law. One of the advantages of FVMs is that
the method is conservative in the sense that it mimics the true solution. Moreover,
it is easier to handle problems with irregular geometry with FVMs in comparison
to FDMs.
The method defines a volume surrounding each discretization point in the do-

main of study – these volumes are also called cells – and inside these cells, an
approximation of the average value of the unknown is achieved.
Let us consider the discretization of the strong differential form of the general

conservation law
∂u (x, t)
∂t

+∇ · f (u (x, t)) = 0, (4.7.1)

where x = (x1, x2, . . . , xd)ᵀ and f = (f1, f2, . . . , fd)ᵀ is the flux of the system, with
d as the dimension of the system.
We start by defining an admissible mesh suitable for FVMs on an interval x ∈

[a, b]. A family of equidistant points as (xi)i=0,...N+1 and a family of midpoints
(Ii)i=1,...,N such that Ii =

[
xi−1/2, xi+1/2

]
is defined resulting in a grid

x0 = x1/2 = a < x1 < x3/4 < · · · < xi−1/2 < xi < xi+1/2 < xN < xN+1/2 = xN+1 = b,
(4.7.2)

with ∆x defined as in (4.1.1) and xi±1/2 = xi ± 1
2∆x [EGH00].

Considering (4.7.1) with d = 1 and integrating it over the rectangle Ii×[t, t+ ∆t]
we have
ˆ t+∆t

t

ˆ
Ii

d

dt
u (x, t) dxdt+

ˆ t+∆t

t

ˆ
Ii

d

dx
f (u) dxdt = 0,

ˆ
Ii

u (x, t+ ∆t) dx−
ˆ
Ii

u (x, t) dx = −
ˆ t+∆t

t

f
(
u
(
xi+1/2, t

))
dt

+
ˆ t+∆t

t

f
(
u
(
xi−1/2, t

))
dt.

Dividing the last equation by ∆x we obtain

1
∆x

ˆ
Ii

u (x, t+ ∆t) dx = 1
∆x

ˆ
Ii

u (x, t) dx

− 1
∆x

ˆ t+∆t

t

f
(
u
(
xi+1/2, t

))
dt

+ 1
∆x

ˆ t+∆t

t

f
(
u
(
xi−1/2, t

))
dt
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4.7. Finite Volume Methods

and if we define Ūn
i as the average value of u (x, t) in the interval Ii at time tn we

obtain

Ūn+1
i = Ūi

n− 1
∆x

[ˆ t+∆t

t

f
(
u
(
xi+1/2, t

))
dt−

ˆ t+∆t

t

f
(
u
(
xi−1/2, t

))
dt

]
. (4.7.3)

Equation (4.7.3) is a relation which provides a mechanism to update the value
of cell Ūi at each time step to obtain the next approximation.
In general, the integral of the flux over time cannot be evaluated analytically,

so an approximation to it – also known as numerical flux – is defined as

F n
i+1/2 ≈

1
∆t

ˆ t+∆t

t

f
(
u
(
xi+1/2, t

))
dt,

and we can now express the fully discrete version of (4.7.3) as

Ūn+1
i = Ūn

i −
∆t
∆x

[
F n
i+1/2 − F n

i−1/2

]
.

A difference method is called conservative if it can be written in the form

Ūn+1
i = Ūn

i −
∆t
∆x

[
F
(
Ūn
i−p, Ū

n
i−p+1, . . . , Ū

n
j+q

)
− F

(
Ūn
i−p−1, Ū

n
i−p, . . . , Ū

n
j+q−1

)]
(4.7.4)

for some integers p, q > 0 [Pul10]. The most important case is for p = 0, q = 1

Ūn+1
i = Ūn

i −
∆t
∆x

[
F
(
Ūn
i , Ū

n
i+1

)
− F

(
Ūn
i−1, Ū

n
i

)]
.

The term finite volume method is used in the scientific literature as synonym of
conservative methods.

4.7.1. Discrete Conservation
An important characteristic of conservative schemes is the property of discrete
conservation. It can be shown [LeV05] that if

∆x
K∑
j=J

U0
j =
ˆ xK+1/2

xJ−1/2

u0 (x) ,

where u0 (x) is the initial condition and J < K are arbitrary indices, then it holds

∆x
K∑
j=J

Un
j =
ˆ xK+1/2

xJ−1/2

u (x, tn) dx.
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4. Finite Difference Methods

Letting Uk (x, t) denote a piecewise function defined by the approximation Un
i ,

then we have ˆ xK+1/2

xJ−1/2

Uk (x, tn) dx =
ˆ xK+1/2

xJ−1/2

u (x, tn) dx,

i.e. the integral of the approximation coincides with the integral of the exact
solution on the interval

[
xJ−1/2, xK+1/2

]
.

4.7.2. Finite Volume Methods as Fitted Schemes
Roos [Roo94] proved that fitted schemes can be generated with FVMs. We consider
again the equation (4.6.2) with f 6= 0. Expressing it in conservative form

−ε
(

exp
(
−q
ε

)
u
′
)′

= exp
(
−q
ε

)
f

with q′ = −b. Integrating over the interval Ii =
(
xi−1/2, xi+1/2

)
yields

−ε exp
(
−q
ε

) (
u
′ (
xi+1/2, t

)
− u′

(
xi−1/2, t

))
=
ˆ
Ii

exp
(
− q
ν

)
fdx.

We assume b = const. or, equivalently, q = −bix on the interval Ii. The deriva-
tive u′ is replaced by the first-order approximation (4.1.4). The integral on the
right-hand side is also approximated numerically to obtain

− ε exp
(
bixi+1/2

ε

)
ui+1 − ui

∆x + ε exp
(
bixi−1/2

ε

)
ui − ui−1

∆x =

− fi
ε

bi

(
exp

(
bixi+1/2

ε

)
− exp

(
bixi−1/2

ε

))
;

dividing by the first term

ui+1 − ui
∆x −

exp
(
bixi−1/2

ε

)
exp

(
bixi+1/2

ε

) (ui − ui−1

∆x

)
= −fi

ε

bi

−1
ε

+
exp

(
bixi−1/2

ε

)
exp

(
bixi+1/2

ε

)
 ,

and rearranging the equation we obtain

ui+1 − ui − exp (γi) (ui − ui−1) = fi
bi

∆x (1− exp (γi)) ,

with
γi = −bi

ε

(
xi+1/2 − xi−1/2

)
,

which is the Il’in scheme.
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4.8. Kurganov-Tadmor Schemes

4.8. Kurganov-Tadmor Schemes
Kuganov and Tadmor [KT00] introduced a high resolution scheme for nonlinear
conservation laws and convection-diffusion equations. The main idea of the scheme
is to use more precise information of local propagation speeds at cell boundaries
in order to average non-smooth parts of the computed approximation over smaller
cells than in the smooth regions. One of the advantages of treating smooth and
non-smooth regions separately is that the numerical diffusion introduced by the
method is independent of ∆t.
We omit the full derivation but instead we only highlight important points of it

and state the final fully-discrete and semi-discrete scheme.
We rewrite (4.7.1) as a system of equations with d = 1

∂

∂t
u (x, t) + ∂

∂x
f (u (x, t)) = 0, (4.8.1)

or the related convection-diffusion equation

∂

∂t
u (x, t) + ∂

∂x
f (u (x, t)) = ∂

∂x
Q (u (x, t) , ux (x, t)) , (4.8.2)

with u (x, t) = (u1 (x, t) , . . . , uK (x, t)) and ux (x, t) denoting the derivative of
u (x, t) with respect to x.
Again, an admissible mesh of site N + 1 is defined as in (4.7.2) with a family of

equidistant points xi and a family of midpoints Ii =
[
xi−1/2, xi+1/2

]
. The step-sizes

∆x and ∆t have the usual definition (4.1.1) and (4.1.2) respectively.
It is assumed that a computed piecewise, linear approximation

ũ (x, tn) =
∑
i

(Un
i − (Ux)ni (x− xi)) 1Ii

at time level tn is already available based on cell averages Un
i – for clarity, in this

section we omit the bar notation used in Section 4.7 to denote cell averages over
the interval Ii – and the approximation to the derivative (Ux)ni . The upper bound
of the local speed of propagation at the boundary of the cell xi+1/2 for the nonlinear
or linearly degenerate case is given by

ani+1/2 = max
[
ρ

(
∂

∂u
f
(
U+
i+1/2

))
, ρ

(
∂

∂u
f
(
U−i+1/2

))]
, (4.8.3)

where

U+
i+1/2 = Un

i+1 −
1
2∆x (Ux)ni+1 , (4.8.4)

U−i+1/2 = Un
i + 1

2∆x (Ux)ni , (4.8.5)
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4. Finite Difference Methods

are the corresponding left and right intermediate values of ũ (x, tn) at xi+1/2 and
ρ (A) here denotes the spectral radius of A.
Instead of averaging over the control volumes Ii× [tn, tn + ∆t], this scheme per-

forms the integration over variable control volumes
[
xi+1/2,l, xi+1/2,r

]
× [tn, tn + ∆t]

where

xi+1/2,l = xi+1/2 − ani+1/2∆t,
xi+1/2,r = xi+1/2 + ani+1/2∆t.

Due to the finite speed of propagation, the new interval differentiates between
smooth and non-smooth regions providing the non-smooth parts with a narrower
control volume of spatial width 2ani+1/2∆t.
Defining Ii =

[
xi+1/2,l, xi+1/2,r

]
and ∆xi+1/2 = xi+1/2,r−xi+1/2,l = 2ani+1/2∆t, which

denotes the width of the Riemann fan originating at xi+1/2, and proceeding in a
similar fashion as in Section 4.7 to obtain the cell averages at tn + ∆t we can
express (4.8.1) as

1
∆xi+1/2

ˆ
Ii

u (x, tn+1) dx = 1
∆xi+1/2

ˆ
Ii

ũ (x, tn) dx

− 1
∆xi+1/2

ˆ tn+∆t

tn

f
(
u
(
xi+1/2,r, t

))
+ 1

∆xi+1/2

ˆ tn+∆t

tn

f
(
u
(
xi+1/2,l, t

))
dt (4.8.6)

and similarly for the point xi over the interval I2
i =

[
xi+1/2,l, xi+1/2,r

]
with ∆xi =

xi+1/2,l − xi+1/2,r = ∆x−∆t
(
ani−1/2 + ani+1/2

)
1

∆xi

ˆ
I2

i

u (x, tn+1) dx = 1
∆xi

ˆ
I2

i

ũ (x, tn) dx

− 1
∆xi

ˆ tn+∆t

tn

f
(
u
(
xi+1/2,l, t

))
+ 1

∆xi

ˆ tn+∆t

tn

f
(
u
(
xi+1/2,r, t

))
dt. (4.8.7)

To avoid confusion, it is important to note that in the second term on the right
hand side of (4.8.6) and (4.8.7), the flux is evaluated with the unknown function
u (x, t) whereas the first term is obtained via the known piecewise solution ũ (x, t).
Equations (4.8.6) and (4.8.7) lead to the cell averages over the nonuniform grid

48



4.8. Kurganov-Tadmor Schemes

[
xi+1/2,l, xi+1/2,r

]

wn+1
i+1/2 = Un

i + Un
i+1

2 +
∆x− ani+1/2∆t

4
[
(Ux)ni − (Ux)ni+1

]
− 1

2ani+1/2

[
f
(
U
n+1/2
i+1/2,r

)
− f

(
U
n+1/2
i+1/2,l

)]
,

wn+1
i = Un

i + ∆t
2
(
ani−1/2 − ani+1/2

)
(Ux)ni

− λ

1− λ
(
ani−1/2 + ani+1/2

) [f (Un+1/2
i+1/2,l

)
− f

(
U
n+1/2
i+1/2,r

)]
,

where λ = ∆t/∆x and the midpoints are obtained via Taylor expansion.
Finally, the nonuniform averages are projected back to the uniform grid which

results in the fully discrete, second-order scheme

Un+1
i = λani−1/2w

n+1
i−1/2 +

[
1− λ

(
ani−1/2 + ani+1/2

)]
wn+1
i + λani+1/2w

n+1
i+1/2

+∆x
2

[(
λani−1/2

)2
(Ux)n+1

i−1/2 −
(
λani+1/2

)2
(Ux)n+1

i+1/2

]
.

The semi-discrete scheme is obtained by letting ∆t → 0 in the expressions for
wn+1
i , wn+1

i+1/2 and Un+1
i – c.f. [KT00] for more details. The scheme reads

d

dt
Ui (t) = − 1

∆x
[
Hi+1/2 (t)−Hi−1/2 (t)

]
, (4.8.8)

with the numerical flux given by

Hi+1/2 (t) = 1
2
[
f
(
U+
i+1/2 (t)

)
+ f

(
U−i+1/2 (t)

)]
−
ai+1/2 (t)

2
[
U+
i+1/2 (t)− U−i+1/2 (t)

]
(4.8.9)

and the values U±i+1/2 (t) given by

U+
i+1/2 (t) = Ui+1 (t)− 1

2∆x (Ux)i+1 (t) ,

U−i+1/2 (t) = Ui (t) + 1
2∆x (Ux)i (t) ,

which are the semi-discrete analogous of (4.8.4) and (4.8.5) respectively. For com-
pleteness, we state also the semi-discrete analogue of (4.8.3)

ai+1/2 (t) = max
[
ρ

(
∂

∂u
f
(
U+
i+1/2 (t)

))
, ρ

(
∂

∂u
f
(
U−i+1/2 (t)

))]
. (4.8.10)

49



4. Finite Difference Methods

We can verify that (4.8.8) is consistent with the definition of the conservative
method (4.7.4), i.e. Hi+1/2 (t) ≡ H (Ui−1 (t) , Ui (t) , Ui+1 (t) , Ui+2 (t)).
The numerical viscosity, or artificial diffusion, introduced by the method is
O (∆x3) whereas for other schemes like Lax-Friedrichs it is O (∆x2/∆t).
It is possible to extend the scheme (4.8.8) to convection-diffusion equations by

including a reasonable numerical approximation for the dissipative flux denoted
by Q (u (x, t) , ux (x, t)). The scheme reads

d

dt
Ui (t) = − 1

∆x
[
Hi+1/2 (t)−Hi−1/2 (t)

]
+ 1

∆x
[
Pi+1/2 (t)− Pi−1/2 (t)

]
,

with

Pi+1/2 (t) = 1
2

[
Q

(
Ui (t) ,

Ui+1 (t)− Ui (t)
∆x

)
+Q

(
Ui+1 (t) , Ui+1 (t)− Ui (t)

∆x

)]
.

Finally, we would like to mention that it is a well known fact that ODEs obtained
as the result of applying semi-discretization methods are always stiff. Moreover,
they become arbitrarily stiff as ∆x→ 0 [GRS07]. Hence, appropriate methods for
stiff ODEs are needed.
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Finite Difference Methods

We can transform the Black-Scholes equation (3.0.7) into the heat equation by
letting s = K exp (x) – c.f. [Sey09] – when the quantities r, σ, and d are constant.
Such transformation is possible because the variable coefficients sj match the order
of the derivative with respect to s:

sj
∂jv (s, t)
∂sj

, for j = 0, 1, 2.

Linear differential equations with such terms are known as Euler’s differen-
tial equations. Nonetheless the advantage that represent having transformed the
Black-Scholes into the heat equation – in terms of numerical methods, the heat
equation is well studied, c.f. [GRS07] – it is only useful for plain-vanilla European
options with constant coefficients. Hence, numerical methods for the equation
(3.0.7) without transformation are needed.
It is useful to define the time as t∗ = T − t and modify Black-Scholes (3.0.7)

accordingly

− ∂v (s, t∗)
∂t∗

+ 1
2σ

2s2∂
2v (s, t∗)
∂s2 + (r − d) s∂v (s, t∗)

∂s
− rv (s, t∗) = 0, (5.0.1)

where the initial condition is the payoff (3.0.8) for a call and (3.0.9) for a put.
During this section we simply denote t∗ as t and work with equation (5.0.1)

instead of (3.0.7). With this definition, we are interested in the price at time
t = T .
Black-Scholes is defined on an infinite interval for s which is impossible to rep-

resent on a computer. Instead, a large enough, finite interval is used to obtain an
approximation to the solution and the boundary conditions are defined accordingly
on this interval. For Example, for an European call on an interval s ∈ [smin, smax]
we have

v (smin, t) = 0,
v (smax, t) = smax exp (−dt)−K exp (−rt) .

European options represent our benchmark problem because there exists an
exact solution for equation (5.0.1) and therefore we can compare the exact solution
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5. The Black-Scholes Equation and Finite Difference Methods

versus the numerical approximation in order to highlight strengths and weaknesses
of the method being used.

5.1. An implicit Method
Let us discretize the Black-Scholes equation with FDM as introduced in Chapter
4. A mesh is defined for the price of the stock s ∈ [smin, smax] with N + 2 points
si for i = 0, 1, . . . , N + 1

smin = s0 < s1 < · · · < sN < sN+1 = smax,

with ∆s = smax−smin/N+1. The time t ∈ [0, T ] is discretized in M points tj for
j = 1, 2, . . . ,M

0 = t1 < t2 < · · · < tM = T,

with ∆t = T/M−1.
Defining V n

i ≡ v (si, tn) and substituting each partial derivative in (3.0.7) by its
corresponding numerical derivative at t = tn+1 we get

−V
n+1
i − V n

i

∆t + 1
2σ

2s2
i

V n+1
i+1 − 2V n+1

i + V n+1
i−1

∆s2 +(r − d) si
V n+1
i+1 − V n+1

i−1
2∆s −rV n+1

i = 0,

where we use the second-order approximation for the first derivative in order to
have a method of order two in space and order one in time. Rearranging the
equation leads to

αiV
n+1
i−1 + βiV

n+1
i + γiV

n+1
i+1 = V n

i , (5.1.1)
with

αi = −1
2

(
σ2s2

i∆t
∆s2 − (r − d) si∆t

∆s

)
,

βi = 1 + r∆t+ σ2s2
i∆t

∆s2 ,

γi = −1
2

(
σ2s2

i∆t
∆s2 + (r − d) si∆t

∆s

)
,

for i = 1, 2, . . . , N and j = 1, 2, . . . ,M .
By expressing (5.1.1) in matrix form we have

β1 γ1
α2 β2 γ2

. . . . . . . . .
αN−1 βN−1 γN−1

αN βN





V n+1
1
V n+1

2
...

V n+1
N−1
V n+1
N

 =



V n
1 − α1V

n
0

V n
2
...

V n
N−1

V n
N − γNV n

N+1

 (5.1.2)
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5.1. An implicit Method

with boundary conditions included. The unknown vector V n+1 is hence obtained
by solving a tridiagonal system of equations with computational effort O (N) at
each time step.

5.1.1. von Neumann Stability Analysis
We define the Fourier modes of the approximation as

V n
i =

∑
ϕ

cnϕ exp (jϕi∆s) , (5.1.3)

where j2 = −1 is the imaginary unit and ϕ represents the wave number. Replacing
(5.1.3) into (5.1.1) we have

αi
∑
ϕ

cn+1
ϕ exp (jϕ (i− 1) ∆s) + βi

∑
ϕ

cn+1
ϕ exp (jϕi∆s)

+ γi
∑
ϕ

cn+1
ϕ exp (jϕ (i+ 1) ∆s) = ∑

ϕ

cnϕ exp (jϕi∆s) .

Due to the linearity of the PDE, it is possible to use only one Fourier mode.
Dividing the last equation by exp (jϕi∆s) we achieve the expression

cn+1
ϕ [αi exp (−jϕ∆s) + βi + γi exp (jϕ∆s)] = cnϕ.

We are interested in the growth factor Gϕ of the Fourier mode. If |Gϕ| ≤ 1 then
the scheme is stable, otherwise the scheme is unstable and therefore not useful
because initial errors are amplified. The growth factor is then defined as

Gϕ =
cn+1
ϕ

cnϕ

= 1
αi exp (−jϕ∆s) + βi + γi exp (jϕ∆s)

= 1
βi + (αi + γi) cos (ϕ∆s)− j (αi − γi) sin (ϕ∆s) ,

and replacing the values for αi, βi and γi we get

Gϕ = 1
1 + r∆t+ σ2S2

i ∆t
∆S2 (1− cos (ϕ∆s)) + j (r−d)si∆t

∆s sin (ϕ∆s)
or

|Gϕ|2 = 1(
1 + r∆t+ σ2s2i ∆t

∆s2 (1− cos (ϕ∆s))
)2

+ (r−d)2s2i ∆t2
∆s2 sin2 (ϕ∆s)

.
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From the expression for |Gϕ|2 it is easy to see that |Gϕ| ≤ 1 without imposing
restrictions on ∆t, ∆s or any other parameter of the PDE because the denominator
will be always greater than one. For instance:

• when cos (ϕ∆s) = −1, then sin2 (ϕ∆s) = 0 and the denominator is(
1 + r∆t+ 2σ2s2∆t

∆s2
)2
> 1.

• when cos (ϕ∆s) = 1, then sin2 (ϕ∆s) = 0 and the denominator is (1 + r∆t)2 >
1.

• when cos (ϕ∆s) = 0, then sin2 (ϕ∆s) = 1 and the denominator is(
1 + r∆t+ σ2s2∆t

∆s2
)2

+ (r−d)2s2∆t2
∆s2 > 1.

The von Neumann analysis tell us that we should not expect stability problems
related to the step sizes.

5.1.2. Numerical Simulation
Implementing the scheme (5.1.2) is straightforward: we only need to solve a tridi-
agonal system of equations for each time step. In environments like Matlab or
Octave it is easy to declare sparse matrices and solve corresponding systems ef-
ficiently. When working with programming languages like C/C++, LAPACK
library provides efficient algorithms to solve sparse linear systems.
As an example we take an hypothetical European call with r = 0.05, d = 0, σ =

0.01, K = 13, T = 1, smin = 10, smax = 15, N = 50, and M = 100 – quantities
are stated without units. The result is shown in Figure 5.1.1a.
From the visual comparison between the exact solution and the numerical solu-

tion we can see that the implicit scheme delivers good results. Moreover, we can
compute the error using the maximum norm∥∥∥v (si, T )− V M

i

∥∥∥
∞
≡ max

∀i

∣∣∣v (si, 0)− V M
i

∣∣∣ ,
where v (s, t) represents the exact solution and V n

i an approximation for v (si, tn).
For different step sizes, the Table 5.1 shows, as expected, that the error is O (∆s2).
Furthermore, the estimate is independent of the norm used to calculate the error.
In addition to the price of the derivative, the Greeks of the price are often

needed. For example, the delta of the derivative is defined as

∆ = ∂v (s, t)
∂s

,

which is easily obtained by applying a numerical derivative operator to V n
i , shown

in Figure 5.1.1b.
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(a) Comparison between the exact solution and the numerical solution of a
plain-vanilla European call with the Implicit Method.
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(b) Spurious oscillations appear when obtaining the delta of the price of the
derivative, defined as ∂V

∂S .

Figure 5.1.1.: Simulation with standard methods for Black-Scholes
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5. The Black-Scholes Equation and Finite Difference Methods

N ×M 20× 200 40× 200 60× 200 80× 200 100× 200∥∥v (si, T )− VMi
∥∥

∞ 0.031733 0.015810 0.008507 0.004653 0.002578

∆s2 0.056689 0.014872 0.006719 0.003810 0.002451

Table 5.1.: Error of the price for the Implicit Method with different discretization
steps in the stock-price space.

Although the approximation for V n
i is second order in space – which is shown

also empirically in Table 5.1 – oscillations are observed between s ∈ [12, 13] for
the first derivative of the option price approximation V n

i . These oscillation are
financially unrealistic or spurious and are introduced by the numerical method.
The Péclet number – defined as the ratio of convection by diffusion – is a useful

tool to anticipate issues with numerical simulations. For Black-Scholes we have

P = ∆S rS
1
2σ

2S2 = 2r
σ2

∆S
S

= O
(
r

σ2

)
,

called the mesh Péclet number. Empirical evidence indicates that the higher the
Péclet number, the higher the danger that the numerical solution exhibits oscilla-
tions [Sey09].

5.2. Exponentially Fitted Schemes
Standard FDM represent unstable solutions for the convection-diffusion equation,
henceforth, Black-Scholes. In this section we use the technique, presented in Sec-
tion 4.6, proposed by Il’in [Il’69] which was later applied to pricing problem with
the Black-Scholes equation by Duffy [Duf06].
The same space and time discretization in Section 5.1 is used in this section.
The corresponding implicit exponential fitted scheme for Black-Scholes equation

(5.0.1) is

−V
n+1
i − V n

i

∆t +ρ1
2σ

2s2
i

V n+1
i+1 − 2V n+1

i + V n+1
i−1

∆s2 +(r − d) si
V n+1
i+1 − V n+1

i−1
2∆s −rV n+1

i = 0,

where
ρ = 1

2ζ coth
(1

2ζ
)
,

and
ζ = (r − d) si∆s

1/2σ2s2
i

= 2 (r − d) ∆s
σ2si

.
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5.2. Exponentially Fitted Schemes

Rearranging and substituting the terms like in Section 5.1 we achieve an scheme

αiV
n+1
i−1 + βiV

n+1
i + γiV

n+1
i+1 = V n

i , (5.2.1)

with

αi = −1
2

(
ρ
σ2s2

i∆t
∆s2 − (r − d) si∆t

∆s

)
,

βi = 1 + r∆t+ ρ
σ2s2

i∆t
∆s2 ,

γi = −1
2

(
ρ
σ2s2

i∆t
∆s2 + (r − d) si∆t

∆s

)
,

for i = 1, 2 . . . , N and j = 1, 2, . . .M .
We can express (5.2.1) in matrix form

β1 γ1
α2 β2 γ2

. . . . . . . . .
αN−1 βN−1 γN−1

αN βN





V n+1
1
V n+1

2
...

V n+1
N−1
V n+1
N

 =



V n
1 − α1V

n
0

V n
2
...

V n
N−1

V n
N − γNV n

N+1

 (5.2.2)

with boundary conditions included. As in Section 5.1, the unknown vector V n+1

is hence obtained by solving a tridiagonal system of equations with computational
effort O (N) at each time step.

5.2.1. Numerical Simulation
The numerical method expressed by equation (5.2.2) is solved in a similar way as
the method given by Equation (5.1.2). The Table 5.2 shows the error for different
discretization grids. It is evident that the Exponential Fitting Method is O (∆s),
as stated in [Il’69], whereas the Implicit Finite Difference Method is O (∆s2). The
introduction of the fitting factor ρ degrades the order of the method. Nevertheless,
the problems with spurious oscillations are solved.
The simulation for the price of the derivative with r = 0.05, d = 0, σ = 0.01, K =

13, T = 1, smin = 10, smax = 15, N = 50, and M = 100 is shown in Figure
5.2.1a. From the image we immediately spot that the reduction in the order of
the method is reflected in an area close to the strike price. If the price of the
derivative close to the strike price is needed at t = 0 then we must increase N
to have a better approximation. A simulation with N = 2000, which reduces the
error

∥∥∥v (si, T )− V M
i

∥∥∥
∞

to 0.00307, is easily achieved with Matlab running on a
laptop computer with average hardware.
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5. The Black-Scholes Equation and Finite Difference Methods

N ×M 20× 200 40× 200 60× 200 80× 200 100× 200∥∥v (si, T )− VMi
∥∥

∞ 0.10371 0.06014 0.04111 0.03051 0.02318

∆s 0.23810 0.12195 0.08197 0.06173 0.04950

Table 5.2.: Error of the price for the Exponential Fitting Method with different
discretization steps in the stock-price space.

In Figure 5.2.1b we have plotted the delta the price of the derivative defined as
∂V/∂S. Spurious oscillations does not exist in this case – the parameters are the
same as those for the simulation used for the Implicit Method. On the other hand,
the artificial diffusion introduced by the method is evident now.

5.3. Wang’s Finite Volume Method
Wang [Wan04] presented a FVM for Black-Scholes with non-constant coefficients.
This section highlights some parts of the derivation and the final scheme.
We would like to represent equation (3.0.7) in conservative form with homoge-

neous Dirichlet boundary conditions. For this propose, we add f (S, t) = −LV0 to
both sides of Black-Scholes, where L is the differential operator in (3.0.7) and

V0 = g1 (t) + 1
ST

[g1 (t)− g2 (t)]S.

Introducing the variable u = V − V0, it is possible to express the Black-Scholes
PDE in the self-adjoint form:

∂u

∂t
− ∂

∂s

[
a (t) s2∂u

∂s
+ b (s, t) su

]
+ c (s, t)u = f (s, t) , (5.3.1)

with

a (t) = 1
2σ

2 (t) ,

b (s, t) = r (t)− d (s, t)− σ2 (t) ,

c (s, t) = r (t)− b (s, t)− s∂d
∂s
.

To start, an admissible mesh analogous to (4.7.2) is defined for the interval
s ∈ [0, smax] with N + 2 grid points, given by a family Ii =

(
si−1/2, si+1/2

)
and a

family (si)i=0,...,N+1

s0 = s1/2 = 0 < s1 < s3/4 < · · · < si−1/2 < si

< si+1/2 < · · · < sN < sN+1/2 = sN+1 = smax, (5.3.2)
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(a) Comparison between the exact solution and the numerical solution of a
plain-vanilla European call with Exponential Fitting method.
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(b) No spurious oscillation observed.

Figure 5.2.1.: Exponential Fitting method applied to Black-Scholes.
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5. The Black-Scholes Equation and Finite Difference Methods

with ∆si = si+1 − si and ∆s = max∀i (∆si).
Integrating the Black-Scholes equation in conservative form (5.3.1) over the cell

Ii =
(
si−1/2, si+1/2

)
leads to

ˆ
Ii

∂u

∂t
ds−

[
s

(
as
∂u

∂s
+ bu

)]si+1/2

si−1/2

+
ˆ
Ii

cuds =
ˆ
Ii

fds, (5.3.3)

Using the mid-point rule as a numerical approximation to an integral, the inte-
grals in (5.3.3) can be replaced by their discrete equivalent

ˆ
Ki

∂u

∂t
dS = ∂Ui

∂t
·
(
Si+1/2 − Si−1/2

)
,

ˆ
Ki

cudS = ciUi ·
(
Si+1/2 − Si−1/2

)
,

ˆ
Ki

fdS = fi ·
(
Si+1/2 − Si−1/2

)
,

and with li := Si+1/2 − Si−1/2, we can rewrite (5.3.3) as

∂Ui
∂t

li −
[
si+1/2ρ

(
u
(
si+1/2, t

))
− si−1/2ρ

(
u
(
si−1/2, t

))]
+ ciUili = fili, (5.3.4)

where discrete unknowns are denoted by Ui := u (si, t), ci := c (si, t) and fi :=
f (si, t) for i = 1, . . . , N . The flux ρ (u (s, t)) therefore is defined as

ρ (u (s, t)) := a (t) s∂u (s, t)
∂s

+ b (s, t)u (s, t) .

Due to the degeneracy of ρ (u (s, t)) at s = 0, the flux must be treated separately
for the degenerate and non-degenerate case.
First, an approximation for ρ (u (s, t)) evaluated at Si+1/2 with i ≥ 1 is obtained.

Let us consider the following two-point boundary value problem:

d

ds

[
a (t) sdv (s)

ds
+ bi+1/2 (t) v (s)

]
= 0, (5.3.5)

v (si) = Ui, (5.3.6)
v (si+1) = Ui+1, (5.3.7)

for s ∈ (si, si+1). Integrating it over the interval yields a first-order linear equation

ρi (v) := a (t) sdv (s)
ds

+ bi+1/2 (s, t) v (s) = c1, (5.3.8)
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5.3. Wang’s Finite Volume Method

and its analytic solution is

v = c1

bi+1/2 (s, t) + c2s
−αi , (5.3.9)

where
αi ≡

bi+1/2 (s, t)
a (t) ;

applying boundary conditions and solving the corresponding linear system, the
approximation for the flux is

ρi (u (s, t)) = bi+1/2 (s, t) s
αi
i+1 · Ui+1 − sαi

i · Ui
sαi
i+1 − sαi

i

, for i = 1, . . . N. (5.3.10)

Now, an approximation for ρ (u) at i = 0 is obtained. For this purpose, it is
needed to reconsider (5.3.5) with an extra degree of freedom

d

ds

[
a (t) sdv (s)

ds
+ b1/2 (s, t) v (s)

]
= c, (5.3.11)

v (0) = U0, (5.3.12)
v (s1) = U1, (5.3.13)

where c is an unknown constant. Solving it analytically yields

ρ0 (u (s, t)) =
(
a (t) sdv (s)

ds
+ b1/2 (s, t) v (s)

)

= 1
2
[(
a (t) + b1/2 (s, t)

)
U1 −

(
a (t)− b1/2 (s, t)

)
U0
]
(5.3.14)

evaluated at S1/2 and for all values of α0.
Now, a fully discretized expression for the flux is possible. Substituting the

discretized flux (5.3.10) and (5.3.14) into (5.3.4) yields

∂Ui (t)
∂t

+ 1
li

[ei,i−1ui−1 (t) + ei,iui (t) + ei,i+1ui+1 (t)] = fi, (5.3.15)

where

e1,1 = x1

4
(
a+ b1+1/2

)
+ b1+1/2 · x1+1/2 · xα1

1

xα1
2 − xα1

1
+ c1l1, (5.3.16)

e1,2 = −
b1+1/2 · x1+1/2 · xα1

2

xα1
2 − xα1

1
, (5.3.17)
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5. The Black-Scholes Equation and Finite Difference Methods

and

ei,i−1 = −
bi−1/2 · xi−1/2 · xαi−1

i−1
x
αi−1
i − xαi−1

i−1
, (5.3.18)

ei,i = bi−1/2 · xi−1/2 · xαi−1
i

x
αi−1
i − xαi−1

i−1
+ bi+1/2 · xi+1/2 · xαi

i

xαi
i+1 − xαi

i

+ cili, (5.3.19)

ei,i+1 = −
bi+1/2 · xi+1/2 · xαi

i+1
xαi
i+1 − xαi

i

; (5.3.20)

expressions which, although it is not explicitly expressed, depend on time because
a (t) , b (s, t) and c (s, t).
These ei,i form the following tridiagonal matrix E ∈ RN×N

E =



e1,1 e1,2
e2,1 e2,2 e2,3

. . . . . . . . .
ei,i−1 ei,i ei,i+1

. . . . . . . . .
eN−1,N−2 eN−1,N−1 eN−1,N

eN,N−1 eN,N


(5.3.21)

and with U (t) = (U1 (t) , . . . , UN (t))ᵀ and F (t) = (f1 (t) , . . . , fN (t))ᵀ, equation
(5.3.15) can be expressed as

∂U (t)
∂t

+ ΦE (t)U (t) = F (t) , (5.3.22)

where

Φ =


1
l1 1

l2 . . .
1
lN

 .
We observe that equation (5.3.22) has an unnecessary matrix-matrix multipli-

cation. We can include the term 1/li in the expressions for ei,i (5.3.16) and (5.3.19)

e1,1 = 1
l1

x1

4
(
a+ b1+1/2

)
+ 1
l1

b1+1/2 · x1+1/2 · xα1
1

xα1
2 − xα1

1
+ c1,

ei,i = 1
li

bi−1/2 · xi−1/2 · xαi−1
i

x
αi−1
i − xαi−1

i−1
+ 1
li

bi+1/2 · xi+1/2 · xαi
i

xαi
i+1 − xαi

i

+ ci,

and redefine (5.3.22) as
∂U (t)
∂t

+ E (t)U (t) = F (t) . (5.3.23)
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5.3. Wang’s Finite Volume Method

Equation (5.3.22) is a first-order linear ODE system for Ui (t). Corresponding
solutions are obtained by applying some of the known methods for this type of
problems. For instance [DB02] reviews several state-of-the-art numerical methods
to solve ODEs.
Alternatively, it is possible to use the θ-method to obtain a full discretization of

ODE (5.3.23). Let us partition the time into M discrete points j = 1, . . . ,M for
t ∈ [0, T ] satisfying 0 = t1 < t2 < · · · < tM = T , ∆t again defined as in (4.1.2).
We have

Un+1 − Un

∆t + θEn+1Un+1 + (1− θ) EnUn = θF n+1 + (1− θ)F n,

with En = E (tn) , F n = F (tn) , Un = U (tn). Rearranging the last equation leads
to (

θEn+1 + τ
)
Un+1 = θF n+1 + (1− θ)F n − ((1− θ) En − τ)Un,

with

τ =


1

∆t . . .
1

∆t

 ∈ RN×N .

The fully-discrete scheme is O (∆xi).

5.3.1. Numerical Simulation
We reproduced the results presented by Wang [Wan04] for a binary option, cash-
or-nothing type, with smax = 700, K = 400, σ = 0.4, r = 0.1, d = 0.04 and
N = M = 100. The result is presented in Figure 5.3.1. As we observe, even if the
initial condition is discontinuous, no spurious oscillations appear on the solution.
Despite the convenient properties that the method exhibits, we want to bring

attention to an issue: we observe in equations (5.3.16)-(5.3.20) that the variable s
has as exponent the term

αi = b (si, t)
a (t) = r (t)− d (si, t)− σ2 (t)

1
2σ

2 (t) ;

for the case when σ2 � r we have that αi = O (r/σ2), i.e the Péclet number
and αi are in the same order. In the example shown in Figure 5.3.1 we have that
α = −1.25, whereas for the case considered in Section 5.1 and 5.2 α = 998.
In this scheme, when the convection dominated case is considered, the term in

the denominator could be out of the range of representable numbers on a computer.
Although nothing is said in [Wan04], we found that it is possible to modify the

equations for ei,i in order to avoid numerical issues. We note from (5.3.16)-(5.3.20)
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Figure 5.3.1.: Cash-or-Nothing option price obtained with Wang’s scheme.

that terms of the form

xαi
i

xαi
i+1 − xαi

i

are recurrent. We can express these terms as

1(
xi+1
xi

)αi − 1
, (5.3.24)

for instance. We know that the term xi+1/xi is small because it is equivalent to

xi + ∆xi
xi

= 1 + ∆xi
xi

and therefore the term (5.3.24) is easier to represent on a computer for the case of
a big αi.
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The modified expressions for ei,i are

e1,1 = 1
l1

x1

4
(
a+ b1+1/2

)
+ 1
l1

b1+1/2 · x1+1/2(
x2
x1

)α1 − 1
+ c1,

e2,1 = −
b1+1/2 · x1+1/2

1−
(
x1
x2

)α1 ,

ei,i−1 = −
bi−1/2 · xi−1/2(
xi

xi−1

)αi−1 − 1
,

ei,i = 1
li

bi−1/2 · xi−1/2

1−
(
xi−1
xi

)αi−1 + 1
li

bi+1/2 · xi+1/2(
xi+1
xi

)αi − 1
+ ci,

ei,i+1 = −
bi+1/2 · xi+1/2

1−
(

xi

xi+1

)αi
.

However, the method is just order one and therefore does not represent any
advantage over the exponentially fitted scheme from Section 5.2 because Wang’s
scheme is more difficult to implement. In addition to that, we must be aware
that as ∆xi → 0 the terms on the denominator also tend to zero, creating further
issues.

5.4. The Kurganov-Tadmor Scheme
We apply now the scheme presented in Section 4.8 to the Black-Scholes equation
(5.0.1). We want to transform the Black-Scholes equation to the general form

∂

∂t
u (x, t) + ∂

∂x
F (u) = ∂

∂x
Q (u, ux) + S (x, t, u)

where S is the source. To this end, the following expressions

∂

∂s
(sv (s, t)) = s

∂

∂s
v (s, t) + v (s, t) ,

∂

∂s

(
s2 ∂

∂s
v (s, t)

)
= s2 ∂

2

∂2s
v (s, t) + 2s ∂

∂s
v (s, t) ,

can be used to get the Black-Scholes equation to the required form

∂

∂t
v (s, t)+ ∂

∂s

((
σ2 − r + d

)
sv (s, t)

)
= ∂

∂s

(
1
2σ

2s2 ∂

∂s
v (s, t)

)
+
(
σ2 − 2r + d

)
v (s, t) .
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Therefore, the fluxes are defined as

F (s, v) :=
(
σ2 − r + d

)
sv (s, t) ,

Q (s, v) := 1
2σ

2s2 ∂

∂s
v (s, t) ,

S (v) :=
(
σ2 − 2r + d

)
v (s, t) ;

with these definitions it is possible to proceed now applying formulae from Section
4.8 to the Black-Scholes equation.
We observe that the expression for ai+1/2 (t) is simplified because we are dealing

with a scalar case and
∂

∂v
F (s, v) ≡ Fv =

(
σ2 − r + d

)
s;

in this sense,
ai+1/2 (t) =

∣∣∣Fv (si+1/2

)∣∣∣ .
On the other hand, Q does not depend on v (x, t) but only on the derivative

∂v/∂s. Hence, the expression for P is also simplified, namely

Pi+1/2 (t) = Q
(
Vi+1 (t)− Vi−1 (t)

2∆s

)
,

in which the second-order approximation for the derivative is used. At the bound-
aries, we can use the following second-order formulae to approximate the deriva-
tives for Q

∂

∂s
v (smin, t) = −3V0 (t) + 4V1 (t)− V2 (t)

2∆s +O
(
∆s2

)
,

∂

∂s
v (smax, t) = VN−1 (t)− 4VN (t) + 3VN+1 (t)

2∆s +O
(
∆s2

)
,

where V0 represents the approximation at smin and VN+1 at smax.
The semi-discrete scheme for the Black-Scholes equation takes the form
dVi
dt

= − 1
∆s

[
Hi+1/2 (t)−Hi−1/2 (t)

]
+ 1

∆s
[
Pi+1/2 (t)− Pi−1/2 (t)

]
+ S (v) ,

with

Hi+1/2 (t) = 1
2
[
F
(
si+1/2, V

+
i+1/2

)
+ F

(
si+1/2, V

−
i+1/2

)]
−
ai+1/2 (t)

2
[
V +
i+1/2 (t)− V −i+1/2 (t)

]
,

Hi−1/2 (t) = 1
2
[
F
(
si−1/2, V

+
i−1/2

)
+ F

(
si−1/2, V

−
i−1/2

)]
−
ai+1/2 (t)

2
[
V +
i−1/2 (t)− V −i−1/2 (t)

]
,
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and

V +
i+1/2 (t) = Vi+1 (t)− 1

2∆s (Vs)i+1 (t)

V −i+1/2 (t) = Vi (t) + 1
2∆s (Vs)i (t)

V +
i−1/2 (t) = Vi (t)−

1
2∆s (Vs)i (t)

V −i−1/2 (t) = Vi−1 (t) + 1
2∆s (Vs)i−1 (t) .

The derivative (Vs)i (t) is approximated with a minmod limiter such that the
semi-discrete scheme fulfills the Total variation diminishing (TVD) condition [KT00].
The generalized minmod limiter is defined as

(Vs)i (t) = minmod
(
θ
Vi (t)− Vi−1 (t)

∆s ,
Vi+1 (t)− Vi−1 (t)

2∆s , θ
Vi+1 (t)− Vi (t)

∆s

)
,

(5.4.1)
where 1 ≤ θ ≤ 2 and the minmod function is defined as

minmod (x1, x2, . . .) =


mini (xi) if xi > 0 ∀i,
maxi (xi) if xi < 0 ∀i,
0 otherwise.

5.4.1. European Options
To test the scheme and its properties, we would like to take as an example a
convection dominated case with known analytic solution. For this reason, an
European option with r = 0.46, σ = 0.02, d = 0, K = 70, smin = 0, smax = 100,
and T = 1 is chosen. Although this setup is financially unrealistic, it is useful as
a stress-test for the scheme under a high Péclet number. The value of the Péclet
number for this setting is

Pe ∝ r

σ2 = 1150.

In the case of an European option with Dirichlet boundary conditions, these
conditions are included in the calculation of the derivative. For example, for i = 1
we have

(Vs)1 (t) = minmod
(
θ
V1 (t)− gsmin

(t)
∆s ,

V2 (t)− gsmin
(t)

2∆s , θ
V2 (t)− V1 (t)

∆s

)
,

where gsmin
(t) represents the prescribed boundary condition at smin. A similar

strategy is followed for the terms V ±i+1/2. For instance

V −1−1/2 = gsmin
(t) + 1

2∆s (Vs)i−1 (t) .
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N 300 400 500 600 700∥∥v (s, T )− VMi
∥∥

2 0.066468 0.054178 0.041912 0.032635 0.026116

∆s2 0.110374 0.062189 0.039840 0.027685 0.020350

Table 5.3.: Error measured in Euclidean norm for the price of an European option
obtained via second order Kurganov-Tadmor scheme.

The parameter θ is chosen problem-wise. The value θ = 1 ensures non-oscillatory
behavior. We found empirically that the values θ ∈ [1.5, 2] produce better results in
this test example. This behavior is also reported in [KT00] for the scalar examples
presented.
To justify our selection for the value of θ, we present three cases with N = 100

using an ODE integrator with automatic time step selection.
From Figures (5.4.1a), (5.4.1b) and (5.4.1c) it is observed that θ = 1 provides the

worst result for both the first and the second derivative. For the first derivative,
θ = 2 gives the best results but the second derivative is deficient in the sense that
it is over estimated. The value θ = 1.5 is the best for both the first and the second
derivative. It is remarkable to see that the resolution obtained is already very
good for N = 100.
We select θ = 1.5 for the minmod limiter for all the simulations and proceed

with N = 500. The result is shown in Figure 5.4.2 and 5.4.3. The approximation
for the price is quite good as in the case for N = 100 but it is easily spotted
that the approximation for the ∆ and Γ is improving fast thanks to the order of
convergence of the method.
Results of the computational order of convergence for Kurganov-Tadmor scheme,

measured with the euclidean norm, are shown in Table 5.3. It can be seen that the
convergence behaves as theory predicts. Another way to see the computational
order of convergence is by measuring how the error decreases when the step size is
reduced. This is done in the Section 5.4.5 for the case of a nonlinear Black-Scholes
equation.
The Kurganov-Tadmor scheme gives very good results for the benchmark prob-

lem presented in this Section: a convection dominated PDE with a high Péclet
number. The first derivative ∆ of the approximation of the price is now free of os-
cillations and it is easily observed that almost no artificial diffusion is introduced.
It is remarkable how good the approximation is for the second derivative of the
price of the option, which is shown in Figure 5.4.3b. In other cases like the Expo-
nentially Fitted scheme, due to the artificial diffusion introduced by the method,
the second derivative is already quite a deficient approximation even if the first
derivative is acceptable. It can be seen that the Kurganov-Tadmor scheme repre-
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(a) First and second derivative of the price with θ = 1.
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(b) First and second derivative of the price with θ = 1.5.
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(c) First and second derivative of the price with θ = 2.

Figure 5.4.1.: Results for different values of θ.
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(a) Surface for t ∈ [0, T ].
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(b) Price at t = T .

Figure 5.4.2.: Price of the option obtained via Kurganov-Tadmor Scheme.
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(a) First derivative ∆.
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(b) Second derivative Γ.

Figure 5.4.3.: Greeks of the option price.

71



5. The Black-Scholes Equation and Finite Difference Methods

sents a big advantage in comparison to other schemes available for two reasons:
the convergence properties and its flexibility. Discontinuities and non-smoothness
on the initial condition are handled satisfactorily.
We now proceed to test the Kurganov-Tadmor scheme with options that present

hyperbolic behavior even for realistic parameters. In addition, some of the follow-
ing examples do not have an analytic solution.

5.4.2. Asian Options
In this section, the full expression (3.1.1) for the pricing of an Asian option is
simulated. We perform a variable change as t∗ = T − t but, again, for convenience
we simply denote t∗ as t:

∂v

∂t
= 1

2σ
2s2∂

2v

∂s2 + rs
∂v

∂s
− ru+ 1

T − t
(s− a) ∂v

∂a
(5.4.2)

with boundary conditions
∂v

∂t
= − a

T − t
∂v

∂a
− rv for s = 0, (5.4.3)

∂v

∂t
= smax − a

T − t
∂v

∂a
for s = smax. (5.4.4)

We note that equation (5.4.2) is not defined for t = T , but when this happens
s = a and the last term is dropped out.
Before continuing the discussion on the pricing of the option, we point out that

the Kurganov-Tadmor scheme is easily extended to two spatial dimensions plus
the temporal dimension [KT00]. The scheme takes the form

dVi,j (t)
dt

= − 1
∆s

[
Hs
i+1/2,j (t)−Hs

i−1/2,j (t)
]
− 1

∆a
[
Ha
i,j+1/2 (t)−Ha

i,j−1/2 (t)
]

+ 1
∆s

[
P s
i+1/2,j (t)− P s

i−1/2,j (t)
]

+ 1
∆a

[
P a
i,j+1/2 (t)− P a

i,j−1/2 (t)
]
,

with the usual definitions for H (t) and P (t).
Now we define the fluxes with the same technique as in Section 5.4.1. The

convective fluxes are:

F s (s, v) =
(
σ2 − r

)
sv,

Fa (s, a, v) = − 1
T − t

(s− a) v;

on the other hand, there is diffusion flux only for the spatial direction s

Qs (s, v, vs) = 1
2σ

2s2∂v

∂s
.
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Finally, the source is
S =

(
σ2 − 2r + 1

T − t

)
v.

Boundary conditions are of Neumann type, i.e. with derivatives both in time
and in the spatial dimension a. Including expressions (5.4.3) and (5.4.4) into
the discretization is not easy because the expressions Hs and Ha are elaborated.
Nevertheless, we noticed that those expressions are analytically solvable and their
exact solutions are defined uniquely by the initial condition, i.e the payoff. The
boundaries for a fixed strike Asian put option are:

v (0, a, t) = max
(

0, K − 1
T

(T − t) a
)

exp (−rt) ,

v (smax, a, t) = max
(

0, K − 1
T

[smaxt+ a (T − t)]
)
.

For the expression (5.4.4) an analytic solution is obtained as is. For expression
5.4.3, a transformation is needed. By defining

ṽ = v exp (rt) ,

and substituting it into the PDE, the boundary condition takes the form
∂ṽ

∂t
= a

T − t
∂ṽ

∂a
,

which now is easily solved. An inverse transformation to get the original variable
v back is straightforward obtained.
An example from [Sey09] for a fixed strike put is replicated in Figure 5.4.4 with

K = 100, T = 0.2, r = 0.05, σ = 0.25 and N = 50. The value for θ = 1.5
as in the case for the simulation for the European option; smin = amin = 0 and
smax = amax = 200. The simulation for t = 0.06 is achieved in an average of 80
seconds with an ODE solver with automatic step selection for the time dimension.
The final price and its derivative is shown in Figure 5.4.5. An analytic solution

is not available to compare with, but we rely on the results from Section 5.4.1 in
which the scheme performed effectively under challenging conditions.
Now we present the case of a floating strike put option with r = 0.15, σ =

0.3, T = 1 and N = 50. The initial condition is

v (s, a, 0) = (a− s)+

and the boundary conditions take the form

v (0, a, t) = max
(

0,−smin + 1
T

(T − t) a
)

exp (−rt)

v (smax, a, t) = max
(

0,−smax + 1
T

[smaxt+ a (T − t)]
)
.
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Figure 5.4.4.: Simulation of a fixed strike Asian option.
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Figure 5.4.5.: Simulation of a fixed strike Asian option at t = T .
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The final price along with the initial condition is shown in Figure 5.4.6. The
derivative in this case shows some oscillation near s = 0, as shown in Figure 5.4.7.
Further research must be done in order to understand this behavior.
For the case of the Asian options, the reader may have noticed that the sim-

ulations were performed with N = 50, whereas in the case for the plain vanilla
European option we performed simulations with N = 500. The reason is because
in this case we are solving an ODE with 50× 50 elements, i.e. the computational
cost is much higher and, in addition, the memory requirements are also high. Fur-
thermore, for N = 100 the simulation is impossible to run on a normal computer:
the memory is exhausted rapidly because the ODE solver saves the result matrix
of size N2 for each time step and because our implementation keeps several arrays
of size N2 during execution.
By profiling the Kurganov-Tadmor scheme implemented in Matlab – c.f. Ap-

pendix A – we could notice that the routine for the minmod derivative was taking
a big part of the running time. Due to its design, Matlab is highly efficient pro-
cessing operations in vector or matrix form and is rather inefficient with element-
wise operations. Now, it is evident that the minmod limiter (5.4.1) requires many
element-wise operations: the derivative must be analyzed at an element-by-element
level at every time step. This characteristic introduces unnecessary overhead in
the running time. In order to alleviate this issue, we coded the minmod routine in
C and compiled it with the MEX [Mat11] utility provided with Matlab suite. In
this way we take advantage of Matlab’s efficiency working with matrices and vec-
tors and low-level programming speed of execution with element-wise operations.
The execution time was improved from taking ∼ 10 minutes in average to ∼ 4
minutes in average for the case of the fixed strike option. For the case of a floating
strike option the improvement is more noticeable: from ∼ 40 minutes in average
to ∼ 6 − 8 minutes. We think this is a great gain, taking into account that the
routine for the minmod limiter is fairly simple to code in C – c.f. Appendix A.7.

5.4.3. Similarity Reduction for Asian Options
Wilmott Reduction

In Section 3.1.1 a reduction of the full PDE (3.1.1) for floating strike Asian options
was presented. As in past sections, we first express the PDE in forward-in-time
form and then we define the convective and diffusive fluxes, if any. This PDE is
convection dominated for a small σ as well as for x→ 0.
The PDE forward in time takes the form

∂y

∂t
= 1

2σ
2x2∂

2y

dx2 + (1− rx) ∂y
∂x
,
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Figure 5.4.6.: Floating strike Asian option.
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Figure 5.4.7.: Floating strike Asian option price derivative at t = T .

where the initial condition for a call is

y (x, 0) =
(

1− 1
T
x
)+

.

The boundary condition (3.1.6) for x = 0 takes the form

∂y

∂t
= ∂y

∂x
(5.4.5)

and y = 0 for x→∞.
As in Section 5.4.2 the boundary conditions are solved analytically when needed

or possible. The equation (5.4.5) has an analytic solution. The unknown boundary
conditions for put options are obtained with the put-call parity.
The fluxes for this PDE are straightforward with the same technique that was

used in last sections for the same purpose. Hence

F = −
(
1− rx− σ2x

)
y,

Q = 1
2σ

2x2y,

S =
(
σ2 + r

)
y.
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Comparison

In Table 5.4 we compare the results in [RS95] for a floating-strike Asian put and
s = 100 and the results from the Kurganov-Tadmor scheme with the PDE shown
in Section 3.1.2. The results provided by Rogers and Shi were obtained with
routine D03PAF from NAG’s library with ∆x = 0.005 and are listed in column
NAG-RS. Columns LB and UB are lower and upper boundaries also from Rogers-
Shi. The column KT-Wilmott corresponds to an approximation obtained with the
Kurganov-Tadmor scheme with the same step size. For the same ∆x we observe
slightly different approximations between the two schemes. The results highlighted
with a star are outside the boundaries. For this example it can be seen that in
general both schemes usually deliver approximation within bounds. It is also
clear that the Kurganov-Tadmor scheme provides approximations that are always
higher than those provided by the NAG routine. Unfortunately, we do not have
enough information on the routine D03PAF to provide a comment regarding its
performance because in addition to be part of a closed-source library, it has been
deprecated in favor of more general routines D03PCF/D03PCA.
In Table 5.5 a list of results for a floating-strike Asian call is shown. The

comparison is between a Crank-Nicolson Implicit Method (CN), a High Order
Compact scheme (HOC), a Monte Carlo (MC) proposed in [KWC11] versus the
Kurganov-Tadmor scheme with the Wilmott (KT-W) reduction, all of them with
N = 500. It is easy to spot that the worst performer is the Crank-Nicolson scheme
providing approximations far away from the other three schemes whereas the High
Order Compact scheme results are similar to those obtained with the Kurganov-
Tadmor scheme. It is interesting to notice that for the case when volatility is small,
i.e. σ = 0.05, the greatest deviation between HOC and KT-W columns occurs.
Furthermore, it can be see that under convection-dominated environments, the
columns CN, HOC and MC are similar in contrast to the approximation obtained
with Kurganov-Tadmor – observe, for example, the case for σ = 0.05 and r = 0.2
with r/σ2 = 80. It is expected that the Crank-Nicolson method is affected by the
hyperbolic behavior and, judging by the results listed in 5.5, it might be possible
that the High-Order Compact scheme is also affected.
An analytic solution for the PDE proposed by Wilmott is not available to

compare with; nevertheless, we know from experiments in Section 5.4.1 that the
Kurganov-Tadmor scheme performs satisfactorily on convection-dominated envi-
ronments with Péclet numbers as high as 1000, and in this sense we are confident
the results from this scheme are better than the Crank-Nicolson and the High-
Order Compact scheme. It is difficult to compare a finite difference method against
a Monte Carlo method, but it is a good reference to have prices obtained with this
method as an independent check.
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σ r NAG-RS KT-Wilmott LB UB
0.1 0.05 1.257 *1.441 1.245 1.355

0.09 0.709 0.817 0.699 0.825
0.15 0.271 0.294 0.252 0.415

0.2 0.05 *3.401 3.656 3.404 3.831
0.09 2.622 2.826 2.622 3.062
0.15 1.723 1.855 1.710 2.187

0.3 0.05 5.628 5.902 5.625 6.584
0.09 *4.736 4.980 4.738 5.706
0.15 3.612 3.803 3.609 4.604

Table 5.4.: Floating-strike Asian put option comparison with values listed in Table
5 from [RS95] for s = 100.

σ r CN HOC MC KT-W
0.05 0.06 3.5025 3.1391 3.1509 2.9686

0.1 5.1148 4.8784 4.8734 4.6809
0.2 9.3988 9.3449 9.3486 9.2018

0.1 0.06 4.1353 3.8929 4.0124 3.8955
0.1 4.0124 5.3592 5.4183 5.2841
0.2 9.5333 9.4385 9.433 9.2962

0.2 0.06 6.1337 5.9919 6.1172 6.0316
0.1 7.2951 7.1641 7.2625 7.1731
0.2 10.547 10.4486 10.4894 10.3942

0.3 0.06 8.3256 8.2462 8.3155 8.2404
0.1 9.3669 9.2902 9.3484 9.2735
0.2 12.2035 12.1361 12.163 12.0931

0.4 0.06 10.5403 10.4921 10.5358 10.4614
0.1 11.5081 11.4607 11.4952 11.4244
0.2 14.0885 14.0444 14.0581 13.9955

Table 5.5.: Floating-strike Asian call option comparison with prices in Table 1 and
2 from [KWC11].
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5.4.4. Rogers-Shi Reduction for Asian Options
Now, a simulation of the Rogers-Shi PDE reduction presented in Section 3.1.2 with
the Kurganov-Tadmor scheme is performed. This PDE is convection dominated
for small σ and for short maturity times T .
The forward-in-time PDE reads

∂w

∂t
= 1

2σ
2x2∂

2w

∂x2 − (ρ (t) + rx) ∂w
∂x

,

and the boundary conditions are changed accordingly.
The fluxes are

F =
(
ρ (t) + rx+ σ2x

)
w,

Q = 1
2σ

2x2∂w

∂x
,

S =
(
σ2 + r

)
w.

The expression for ρ (t) is defined depending on the type of the Asian option:
fixed or floating strike.
For this PDE we do not provide a put-call parity because to the author’s best

knowledge, it does not exist yet. Rogers and Shi provide [RS95] Dirichlet-type
boundary conditions for both floating and fixed strike call options.

Comparison with other schemes

A comparison between the data in [RS95] and the prices obtained with Kurganov-
Tadmor scheme is shown in Table 5.6. The column RS refers to the results of
a fixed strike Asian call option presented by Rogers-Shi with the NAG routine
D03PAF with ∆x = 0.005, s = 100 and σ = 0.05. The column KT1 shows the
results obtained with the Kurganov-Tadmor scheme with the same step-size. The
column KT2 is a simulation with ∆x = 0.00125.
Looking at the column KT1 we notice that most of the time the Kurganov-

Tadmor scheme yields results that are very close to or between the bounds. In
contrast, the approximations on column RS are either above or below the interval
defined by the bounds in all cases. Again, a star is placed to highlight a result if
it is either up or down the interval defined by the bounds. It is remarkable that
when comparing the approximations in column KT1 for different values of r, the
Kurganov-Tadmor scheme produces better results when the hyperbolic behavior
is present, i.e. for the case when r = 0.15 all our approximations in column KT1
are inside the bounds.
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r Strike RS KT1 KT2 LB UB

0.05 95 *7.157 7.180 7.178 7.174 7.183
100 *2.621 *2.742 2.719 2.713 2.722
105 *0.439 *0.311 0.334 0.337 0.343

0.09 95 8.823 8.809 8.809 8.809 8.821
100 *4.185 *4.324 4.311 4.308 4.318
105 *1.011 0.958 0.958 0.958 0.968

0.15 95 *11.090 11.094 11.094 11.094 11.114
100 *6.777 6.796 6.795 6.794 6.810
105 *2.639 *2.768 2.747 2.744 2.761

Table 5.6.: Comparison of the results obtained in Table 1 in [RS95] vs. the
Kurganov-Tadmor scheme.

We list column KT2 with a grid four times finer than KT1 to show the conver-
gence of the method. The simulation is achieved in approximately 1.5 minutes. In
column KT2 all the approximations are inside the bounds.
It is reported in [RS95] that as r increases, a rise in the simulation time is

observed as well. Depending on the algorithm used, it could be expected that
increasing r, leaving σ fixed, results in an increase on the simulation time because
the convection-dominated behavior arises. This increase in simulation time is not
observed with the Kurganov-Tadmor scheme.
The Table 5.8 list a comparison of price of a fixed-strike Asian call option with

r = 0.09 obtained with the Kurganov-Tadmor scheme against two other approxi-
mations: the column labeled as Chen-Lyuu lists prices obtained with the method
proposed in [CL07] which is a lower bound for the price. The values listed in col-
umn Hsu-Lyuu were obtained with lattice algorithm that exhibit quadratic-time
convergence proposed in [HL07]. The column labeled as Exact is obtained with a
semi-analytic method proposed in [Zha01]. As Chen and Lyuu pointed out, the
reason for testing the method with such large volatilities is because many formulas
and numerical schemes deteriorate its approximation as the volatility increases. At
the right-hand side of each approximation we provide the difference between the
price obtained and the exact value. From this error we observe that the Kurganov-
Tadmor scheme gives similar approximations to those obtained by the Hsu-Lyuu
lattice algorithm. We also observe that the Chen-Lyuu formula does deteriorate
with as the volatility is increased whereas the performance of the the Hsu-Lyuu
lattice and the Kurganov-Tadmor scheme are stable for all σ.
Given that we are using asymptotic boundary conditions, we must pay special

attention to the cases when the diffusion term is big in order to fulfill those condi-

82



5.4. The Kurganov-Tadmor Scheme

σ Strike MC KT LB UB

0.10 95 8.91 8.91 8.91 8.95
100 *4.91 4.92 4.92 5.10
105 *2.06 2.07 2.07 2.34

0.30 90 *14.96 15.02 14.98 15.23
100 *8.81 8.84 8.83 9.39
110 *4.68 *4.67 4.70 5.37

0.50 90 *18.14 18.31 18.18 18.52
100 *12.98 13.09 13.02 13.69
110 *9.10 *9.16 9.18 9.97

Table 5.7.: Comparison of the results for a fixed strike Asian option in Table 6 in
[RS95] vs. the Kurganov-Tadmor scheme.

tions, i.e. our discrete interval must be large enough. This is because the diffusion
term is responsible for the smoothing of the solution. For example, in Figure 5.4.8a
the volatility is σ = 0.05 and we observe that the solution is almost a traveling
wave of the initial condition in the sense that little smoothing is observed at t = T .
On the other hand, in Figure 5.4.8b the volatility σ = 1.0 and it is easily observed
that with the interval x ∈ [−1, 3] the boundary condition w (x, t) = 0 as x → ∞
is not fulfilled properly and as a consequence wrong approximations are achieved.
The interval used in Table 5.8 for σ ∈ [0.05, 0.6] is x ∈ [−1, 3] and for σ ∈ (0.6, 1.0]
is x ∈ [−4, 5], but the value for ∆x is kept fixed.
Another popular method to price derivatives is Monte Carlo method. In Table

5.7 a list of prices obtained with Monte Carlo (MC) in [RS95] is shown along
with a simulation with Kurganov-Tadmor (KT) scheme for a fixed strike Asian
call at s = 100 with T = 1, r = 0.09, ∆x = 0.0025 and different volatilities. As
mentioned in last section, it is complicated to compare a FDM with Monte Carlo
techniques, but comparisons like the one shown in Table 5.7 serve, for example,
as a good reference to check that the FDM is not affected by other unknown
phenomenon. In the comparison, the Kurganov-Tadmor scheme out-performs this
popular numerical technique, where it is considered a good approximation when
it is inside the bounds. The approximations outside the interval of the bounds
is marked with a star. It is important to remark that the simulation with the
Kurganov-Tadmor scheme took ∼ 20 seconds and although we do not have that
information from the simulation with the Monte Carlo method, we know that the
convergence for Monte Carlo could be as bad as O

(
N 1/2

)
where N is the number

of simulated paths, therefore a higher computational effort is needed, which results
in slower simulations.
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σ K Exact Hsu-Lyuu Chen-Lyuu KT
0.05 95 8.8088392 8.808717 1.22e− 04 8.808839 2.00e− 07 8.808983 1.44e− 04

100 4.3082350 4.309247 1.01e− 03 4.308231 4.00e− 06 4.318153 9.92e− 03

105 0.9583841 0.960068 1.68e− 03 0.958331 5.31e− 05 0.957513 8.71e− 04

0.1 95 8.9118509 8.912238 3.87e− 04 8.911839 1.19e− 05 8.914974 3.12e− 03

100 4.9151167 4.914254 8.63e− 04 4.915075 4.17e− 05 4.920286 5.17e− 03

105 2.0700634 2.072473 2.41e− 03 2.069930 1.33e− 04 2.069732 3.31e− 04

0.2 95 9.9956567 9.995661 4.30e− 06 9.995362 2.95e− 04 9.997251 1.59e− 03

100 6.7773481 6.777748 4.00e− 04 6.776999 3.49e− 04 6.778434 1.09e− 03

105 4.2965626 4.297021 4.58e− 04 4.295941 6.22e− 04 4.296475 8.76e− 05

0.3 95 11.6558858 11.656062 1.76e− 04 11.654758 1.13e− 03 11.656542 6.56e− 04

100 8.8287588 8.829033 2.74e− 04 8.827548 1.21e− 03 8.829166 4.07e− 04

105 6.5177905 6.518063 2.72e− 04 6.516355 1.44e− 03 6.517857 6.65e− 05

0.4 95 13.5107083 13.510861 1.53e− 04 13.507892 2.82e− 03 13.511028 3.20e− 04

100 10.9237708 10.923943 1.72e− 04 10.920891 2.88e− 03 10.923937 1.66e− 04

105 8.7299362 8.730102 1.66e− 04 8.726804 3.13e− 03 8.729934 2.20e− 06

0.5 95 15.4427163 15.442822 1.06e− 04 15.437069 5.65e− 03 15.442907 1.91e− 04

100 13.0281555 13.028271 1.15e− 04 13.022532 5.62e− 03 13.028286 1.30e− 04

105 10.9296247 10.929736 1.11e− 04 10.923750 5.87e− 03 10.929685 6.03e− 05

0.6 95 17.406402 17.396428 17.406609

100 15.128426 15.118595 15.128486

105 13.113874 13.103855 13.113802

0.8 95 21.349949 21.326144 21.349981

100 19.288780 19.265518 19.288744

105 17.423935 17.400803 17.423820

1.0 95 25.252051 25.205238 25.252053

100 23.367535 23.321951 23.367513

105 21.638238 21.593393 21.638200

Table 5.8.: Data corresponding to Table 3 in Chen-Lyuu.
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5.4.5. A Nonlinear Black-Scholes Equation
Another interesting example to show is the non-linear Black-Scholes equation pro-
posed by Windcliff et al [WWFV07]. The non-linear PDE arises when hedging a
contingent claim with an asset that is not perfectly correlated with the underlying
asset. For example, the contingent claim is written on an asset with price s that
cannot be traded. Instead, a reference, correlated asset is used to price the option.
Let us define ρ as the correlation between the underlying asset and the reference,

λ as the risk loading parameter and

q =
sign

(
∂v
∂s

)
for a short position,

−sign
(
∂v
∂s

)
for a long position,

then the non-linear Black-Scholes takes the form
∂v

∂t
= max

q∈[−1,1]

[(
r′ + qλσ

√
1− ρ2

)
s
∂v

∂s
+ 1

2σ
2s2∂

2v

∂s2 − rv
]

(5.4.6)

for a short position and
∂v

∂t
= min

q∈[−1,1]

[(
r′ + qλσ

√
1− ρ2

)
s
∂v

∂s
+ 1

2σ
2s2∂

2v

∂s2 − rv
]

(5.4.7)

for a long position. The term r′ is a function of the drift rate µ of the stochastic
process driving the asset S and reference asset’s drift rate µ′ , namely

r′ = µ− (µ′ − r) σρ
σ′

with σ′ defined as the volatility of the reference asset.
The boundary conditions are

∂v

∂t
= −rv for s→ 0, (5.4.8)

v = As exp
((
r′ − r + qλσ

√
1− ρ2

)
t
)

+B exp (−rt) for s→∞,(5.4.9)

where A and B depend on the initial condition, i.e. the payoff.
For discretization purposes we can write equations (5.4.6) and (5.4.7) as

∂v

∂t
=
(
r′ + qλσ

√
1− ρ2

)
s
∂v

∂s
+ 1

2σ
2s2∂

2v

∂s2 − rv.

The fluxes are

F = −
(
r′ + qλσ

√
1− ρ2 − σ2

)
sv,

Q = 1
2σ

2s2∂v

∂s
,

S =
(
σ2 − r′ − qλσ

√
1− ρ2

)
v,
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(a) Small diffusion term σ = 0.05.
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(b) Large diffusion term σ = 1.0.

Figure 5.4.8.: Different diffusion terms for the Rogers-Shi PDE.
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r 0.05
ρ 0.9
σ 0.2
µ 0.07
σ′ 0.3
µ′ = r + (µ− r) σ

′ρ
σ 0.077

λ 0.2
r′ = µ− (µ′ − r) σρσ′ 0.0538
K 100
T 1

Table 5.9.: Set of parameters for a short straddle simulation.

which define all we need to apply the Kurganov-Tadmor scheme.
As an example, we perform a simulation with a short straddle option with the

parameters shown in Table 5.9.
The payoff is

v (s, 0) = (K − s)+ + (s−K)+

and the boundary conditions are

v (smin, t) = K exp (−rt)

for smin. For smax at t = 0 we have from equation (5.4.9) that

(K − smax)+ + (smax −K)+ = Asmax exp (0) +B exp (0) ,
smax − k = Asmax +B,

therefore A = 1 and B = −K and the boundary condition at smax is

v (smax, t) = smax exp
((
r′ − r + qλσ

√
1− ρ2

)
t
)
−K exp (−rt) .

A comparison of the results presented in [WWFV07] and our results obtained
with the Kurganov-Tadmor scheme is shown in Table 5.10 for s = 100 and t = T .
In the column labeled as CN, the result obtained with Crank-Nicolson pro-

posed by Windcliff is shown whereas the column KT is the price obtained with
Kurganov-Tadmor scheme. A small discrepancy is between the Crank-Nicolson
and the Kurganov-Tadmor scheme is evident. Nevertheless, the numerical method
proposed by Windcliff is achieved with a standard central, forward or backward
difference formula, i.e. the first derivative is – following Windcliff notation – ap-
proximated as

(Vs)ni,cent = V n
i+1 − V n

i−1
si+1 − si−1

,
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N CN KT
51 17.10144 17.92125
101 17.12367 17.98633
201 17.12899 18.00273
401 17.13021 18.00702
801 17.13050 18.00799
1601 17.13058 18.00817

Table 5.10.: Comparison between Crank-Nicolson vs. Kurganov-Tadmor method
with parameters in Table 5.9.

r 0.03
ρ 0.5
σ 0.7
µ 0.04
σ′ 0.25
µ′ = r + (µ− r) σ

′ρ
σ 0.0317

λ 0.9
r′ = µ− (µ′ − r) σρσ′ 0.0375
K 100
T 1

Table 5.11.: Second set of parameters for a short straddle simulation.

for the central difference case. Thanks to our experiments in Section 5.1.2 we
know that even for the fully implicit, second-order scheme, issues arose for certain
important cases – c.f. [WWFV07] Appendix A for a detailed description of the
method used to obtain the values in column CN. In addition to that, the numerical
viscosity introduced by the central scheme is O (∆x2p/∆t), where p is the order of
convergence.
It is difficult to say which is a better approximation or which approximation is

correct but given the aforementioned issues with CN, we are biased to think that
the Kurganov-Tadmor scheme achieves a better approximation.
For a short straddle but different set of parameters – listed in Table 5.11 – a

list of approximations is shown in Table 5.12. As expected, a discrepancy between
both methods also appears for the second set of parameters.
Because we do not have an exact formula to compare with, we calculate the

computational order of convergence by observing how the error decreases when
the discretization steps increase. Using the parameters in Table 5.9, the results
are shown on Table 5.13.
Let V1 be the approximation at si and T with N1 discretization points and V2
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s CN KT
10 91.2063 93.9848
20 85.3930 87.9937
30 79.7849 82.2132
100 102.8771 103.9016

Table 5.12.: Crank-Nicolson vs Kurganov-Tadmor for different stock values with
N = 401.

N KT Error CC
21 17.39550
41 17.87244 0.47694
81 17.97490 0.10245 4.6552
161 17.99992 0.02503 4.0941
321 18.00607 0.00615 4.0696
641 18.00759 0.00152 4.0405
1281 18.00801 0.00041 3.7027
2561 18.00810 0.00010 4.1797

Table 5.13.: Computational convergence of the Kurganov-Tadmor scheme.

the approximation with N2 for N1 < N2, then the error column in Table 5.13 is
defined as

e = |V1 − V2| ,

and the column labeled as CC represents the computational order of convergence.
The Kurganov-Tadmor scheme exhibits quadratic convergence, i.e. by doubling the
step-size, the error is decreased by a factor of 4. This is a good property because as
Windcliff states, given that the PDE is nonlinear, it is difficult to assess whether
the numerical method would converge to the financially relevant solution.
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6. Conclusion
Three numerical methods to solve the issues that arise when convection-dominated
behavior is present were studied in this thesis. All of them have advantages and
disadvantages but based on the experiments performed, we concluded that the
Kurganov-Tadmor scheme is the most flexible one.
The Exponentially Fitted scheme presented in Section 5.2 is straightforward to

implement: the discretization of the system leads to a three-point relation of the
values on the current layer, similar to the relation obtained with the fully implicit
method. Dirichlet boundary conditions are easily included into the scheme. For
conditions of Neumann type, the discrete boundary condition is obtained and
placed accordingly into the discretization. A sparse linear system of size N is
built and can be solved efficiently with numerical libraries specially suited for
that purpose: Blas [LHKK79] and Lapack [ABB+99]. Because the system is
tridiagonal, the computational effort to solve it at each time step is O (N). The
method is convergent of order one and artificial diffusion is introduced as can be
seen in Figures 5.2.1a and 5.2.1b. Near the strike price of the option, it is evident
that the approximation is deficient due to the artificial diffusion. Although the
oscillation issues are solved and the linear system solution is obtained efficiently
with proper libraries, a large number of grid points must be used in order to obtain
a decent approximation.
Wang’s finite volume method in Section 5.3 is a robust method as it was shown

with an example with discontinuous payoff: no oscillations are present. When
a simulation of an European option is performed, we obtain similar results to
those obtained with the Exponentially Fitted scheme. Wang’s method is also
convergent of order one. A big disadvantage of the method is that it cannot
handle very high Péclet numbers. This is because the numerical expression for the
matrix E in equation (5.3.22) contains an exponent in the spatial variable which
is of the same order as the Péclet number, see for instance equation (5.3.19). This
characteristic is reflected in the fact that the numerical method produces extremely
big numbers that cannot be represented with native data-types on a computer
and instead an arbitrary-precision library must be used, which introduces more
computational effort. We proposed a modification to the Wang’s scheme in order
to be able to properly handle convection-dominated cases with a very high Péclet
number. Nevertheless, further issues appear because as ∆x→ 0 the denominator
of equation (5.3.24) also goes to zero, creating, again, big numbers as the result
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of the division. In the limit case, a division by zero. The palliative proposed by
us solves one issue but creates another. The method performs satisfactorily but
only for a certain ranges of values of σ and the risk free rate. An additional point
to this discussion is the fact that because Wang’s scheme has convergence order
one, it does not represent any advantage in comparison with the Exponentially
Fitted scheme in terms of convergence properties. In terms of simplicity, Wang’s
scheme is elaborated and therefore more effort is required to implement it, but
has the advantage of providing a semi-discretization form which is useful when it
is required/desired to use an ODE solver with automatic step selection, among
other advantages. Finally, Wang’s scheme is not flexible in the sense that it is not
possible to apply a general option type but is rather suitable only for European
and American options.
The Kurganov-Tadmor scheme was presented in Section 5.4. Extensive exper-

iments and comparisons were made with this scheme because for various reasons
we think it is the best of the three methods presented. The method exhibits a
convergence of order two which represents an advantage over the Exponentially
Fitted and the Wang’s scheme; the quadratic convergence is achieved even for
the nonlinear Black-Scholes simulation as shown in Table 5.13. In general, we
consider that a method of quadratic convergence is a good balance between the
computational effort and the quality of an approximation.
It was found that the flexibility of Kurganov-Tadmor scheme is very convenient

for the pricing problem when different PDEs are used: by transforming the pricing
PDE to the general convection-diffusion equation 4.8.2 it is possible to apply the
method transparently. A proof-of-concept code is shown in Appendix A and it can
be seen that by defining the fluxes and the boundary conditions, practically the
same code can be used regardless of the problem.
Another advantage of the Kurganov-Tadmor scheme is that the numerical vis-

cosity introduced is only O (∆x)2p−1 where p is the order of convergence, i.e. an
order O (∆x)3 for this scheme, whereas other central schemes introduce numerical
viscosity O (∆x/∆t)2p. This characteristic allows to obtain a semi-discrete expres-
sion of the method by letting ∆t→ 0 and take advantage of the existing methods
to solve ODEs. In this work, an ODE solver with automatic time step selection
was used in all the experiments. One disadvantage of the semi-discrete form of
the Kurganov-Tadmor scheme is that the resulting ODE system is stiff and this
means that special routines for stiff ODEs must be used and in general these rou-
tines require a higher computational effort than those for non-stiff ODEs. In our
simulations of Asian options with the full PDE in Section 5.4.2 it was found that
the stiffness of the ODE system is affected by the type of initial condition, i.e. if
we are simulating a floating or fixed strike option.
Because of the form of the numerical fluxes defined in the expression (4.8.9),
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it is difficult to include the discretized boundary conditions of Neumann type –
like the ones in the Wilmott reduction for Asian options – into the scheme and
for this reason we decided to solve the boundary conditions analytically and use
the put-call parity to obtain the boundaries when those were not available for
certain instrument: for example, in Section 3.1.1, the boundary conditions for
a call are presented based on boundedness assumptions on the second derivative
when the price of the underlying goes to zero. The other condition is obtained from
the payoff for the case when the price goes to infinity. The unknown boundary
conditions for a put can be easily obtained with the put-call parity from the known
ones.
We presented three PDEs for Asian options: one considered a full Black-Scholes

expression for this type of option, other as a reduction of the full PDE and a third
which is obtained by independent arguments.
The Wilmott similarity reduction was compared to the Rogers-Shi reduction in

Table 5.4 with data originally obtained in [RS95]. This was done this way due to
the lack of data available for this similarity reduction in scientific journals. The
data listed in this table shows that in general the Kurganov-Tadmor scheme leads
to approximations very similar to those in [RS95]. These approximations are most
of the time inside the interval defined by the bounds. In Table 5.7 we compare
again the Rogers-Shi PDE discretized with the Kurganov-Tadmor scheme against
a Monte Carlo technique. Surprisingly, all the approximations obtained with the
Kurganov-Tadmor are considerable superior to those obtained with Monte Carlo.
In Table 5.5 the same PDE with the Kurganov-Tadmor scheme was compared to

other three methods with data from [KWC11]. In this table it is evident the advan-
tages of having a proper scheme for convection dominated PDEs. By comparing
with the Crank-Nicolson column it is possible to spot the difference. The other
two methods lead to similar results as those obtained with the Kurganov-Tadmor
scheme.
The Rogers-Shi reduction was also compared to other numerical schemes tech-

niques. In Table 5.6 the approximations with the Kurganov-Tadmor scheme are
listed. We note that this method delivers better approximations – being a good
approximation the one that is inside the bounds – in comparison to the scheme
used in [RS95]. If we use a finer grid, then the power of the scheme is evident:
all the approximations converge to values inside the interval between LB and UP.
The Table 5.8 provides plenty of data to compare with. We observe that the
Kurganov-Tadmor scheme does not lose accuracy when the volatility is increased,
as reported in [CL07].
While the simulations for PDEs with one temporal and one spatial variable were

finished in a matter of seconds or, at most, in a few minutes, the simulation for
the Asian options with the full PDE – one temporal and two spatial variables – is
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much more demanding in terms of computational cost and memory management.
We give two reasons for this: the first is the well-known curse of dimensionality.
This phenomenon is well-known and a rule of thumb is to say that when the
dimensionality p > 3 then it is not longer efficient to use finite difference methods.
The second reason is because of our implementation, Matlab’s syntax and the ODE
routine. As can be seen in Appendix A the method requires to keep track of the
derivative of the current values of the solution and other several quantities which
are all of the same size of the solution vector v0 and depending on the number
N of discretization steps it means that several vectors of size N2 exist in memory
at execution time; this is done so because Matlab is much more efficient working
with matrices and vectors than working with arrays in an element-wise manner.
In addition to that, the routine used to solve the ODE system saves in memory
the solution for each time step, instead of just delivering the solution at t = T ,
characteristic that causes the memory to fill up very fast. For N = 100, 8GB
of RAM memory are rapidly exhausted causing the operating system to request
space on the swap memory – in Linux – which is also rapidly exhausted, leading to
instability of the operating system. We took advantage of the possibility of using
mixed Matlab language and C code to achieve a more efficient technique in terms
of running time with very good results. This extra effort of coding the routine for
the minmod derivative is not significant due to the simple derivative expression
and its almost direct translation into C code. Nevertheless, the memory issues
were still there. A possible solution for the high memory requirement issue is to
code the method completely in a programming language like C or C++. We think
it is not entirely convenient to implement the Kurganov-Tadmor scheme in Matlab
for PDEs like (3.1.1) with three dimensions, but instead we recommend low-level
programming languages.

Finally, a nonlinear Black-Scholes equation was simulated. This PDE is pro-
posed in [WWFV07] and little data are provided in the original paper. Com-
parisons are shown in Table 5.10 for the first set of parameters. The difference
between the method proposed – a Crank-Nicolson method – and the Kurganov-
Tadmor is significant. Nevertheless, we must keep in mind that the approximation
of the price is obtained exactly at the strike price. From Figure 2.2.1c we observe
that the payoff of the straddle is non-smooth exactly at the strike price. In ad-
dition to that, we know that Crank-Nicolson performs quite bad exactly at this
non-smooth parts leading to a smeared approximations. On the other hand, we
know that the Kurganov-Tadmor scheme performs adequately at discontinuities or
non-smooth parts of the initial condition. The computational order of convergence
is as expected, showing quadratic convergence.

Overall, there are two properties of the Kurganov-Tadmor method which are
remarkable: its flexibility and its reliability. Thanks to its flexibility, we were able
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to test a wide range of PDEs with the same scheme in an easy manner. Thanks to
its reliability we can simulate a broad range of instruments with different payoffs,
disregarding discontinuities or non-smoothness on it.
A big limitation is that in environments like Matlab it is difficult to be efficient

handling memory due to both the characteristics of the scheme and the Matlab’s
syntax. In some cases, having a semi-discrete scheme is considered as disadvan-
tageous because a separate routine is needed to solve the ODE system and this
requires time to code if it is not readily available.

95





Bibliography
[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-

garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK users’ guide, third ed., Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 1999.

[CFL28] R. Courant, K. Friedrichs, and H. Lewy, Über die partiellen Differen-
zengleichungen der Mathematischen Physik, Mathematische Annalen
100 (1928), 32–74.

[CL07] K.W. Chen and Y.D. Lyuu, Accurate pricing formulas for Asian op-
tions, Applied Mathematics and Computation 188 (2007), 1711 –
1724.

[DB02] P. Deuflhard and F. Bornemann, Scientific computing with Ordinary
Differential Equations, Springer-Verlag, 2002.

[Duf06] D. Duffy, Finite difference methods in financial engineering: A partial
differential equation approach, Wiley, 2006.

[EGH00] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, So-
lution of Equation in Rn (Part 3), Techniques of Scientific Computing
(Part 3) (P.G. Ciarlet and J.L. Lions, eds.), Handbook of Numerical
Analysis, vol. 7, Elsevier, 2000, pp. 713 – 1018.

[GRS07] C. Grossmann, H.G. Roos, and M. Stynes, Numerical treatment of
Partial Differential Equations, Springer-Verlag, 2007.

[HL07] W.W.Y. Hsu and Y. Lyuu, A convergent quadratic-time lattice algo-
rithm for pricing European-style Asian options, Applied Mathematics
and Computation 189 (2007), 1099–1123.

[Il’69] A. M. Il’in, Differencing scheme for a differential equation with a
small parameter affecting the highest derivative, Mathematical Notes
6 (1969), 596–602.

97



Bibliography

[KIT11] KITCO, Historical Gold Charts and Data, http://www.kitco.
com/charts/historicalgold.html, 2011, Retrieved 31-Oct-
2011.

[KT00] A. Kurganov and E. Tadmor, New high-resolution central schemes
for nonlinear conservation laws and Convection-Diffusion equations,
J. Comput. Phys 160 (2000), 241–282.

[KWC11] A. Kumar, A. Waikos, and S. P. Chakrabarty, Pricing of average
strike Asian call option using numerical PDE methods, ArXiv e-prints
(2011).

[LeV05] R.J. LeVeque, Numerical methods for Conservation Laws, Birkhäuser,
2005.

[LHKK79] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Ba-
sic linear algebra subprograms for fortran usage, ACM Trans. Math.
Softw. 5 (1979), 308–323.

[Mat11] Mathworks, External Interfaces, http://www.mathworks.com/
help/techdoc/matlab_external/bp_kqh7.html, 2011, Re-
trieved 5-Dec-2011.

[OCC11] OCC, Daily Volume Statistics – September 2011, http:
//www.theocc.com/webapps/daily-volume-statistics,
2011, Retrieved 26-Oct-2011.

[Pul10] Roland Pulch, Numerical analysis and simulation of partial differen-
tial equations, Lecture notes, University of Wuppertal, 2010.

[Roo94] H.G. Roos, Ten ways to generate the Il’in and related schemes, J.
Comput. Appl. Math. 53 (1994), no. 1, 43 – 59.

[RS95] L. C. G. Rogers and Z. Shi, The value of an Asian option, J. Appl.
Prob. 32 (1995), no. 4, 1077–1088.

[Sey09] R.U. Seydel, Tools for Computational Finance, fourth ed., Springer-
Verlag, 2009.

[Str89] J.C. Strikwerda, Finite difference schemes and partial differential
equations, second ed., SIAM, 1989.

[Wan04] S. Wang, A novel fitted finite volume method for the Black-Scholes
equation governing option pricing, IMA J. Numer. Anal. (2004).

98

https://webvpn.uni-wuppertal.de/charts/,DanaInfo=www.kitco.com+historicalgold.html
https://webvpn.uni-wuppertal.de/charts/,DanaInfo=www.kitco.com+historicalgold.html
https://webvpn.uni-wuppertal.de/help/techdoc/matlab_external/,DanaInfo=www.mathworks.com+bp_kqh7.html
https://webvpn.uni-wuppertal.de/help/techdoc/matlab_external/,DanaInfo=www.mathworks.com+bp_kqh7.html
https://webvpn.uni-wuppertal.de/webapps/,DanaInfo=www.theocc.com+daily-volume-statistics
https://webvpn.uni-wuppertal.de/webapps/,DanaInfo=www.theocc.com+daily-volume-statistics


Bibliography

[WDH94] P. Wilmott, J. Dewynne, and S. Howison, Option pricing: Mathemat-
ical models and computation, Oxford Financial Press, 1994.

[WWFV07] H. Windcliff, J. Wang, P. A. Forsyth, and K. R. Vetzal, Hedging with
a correlated asset: Solution of a nonlinear pricing PDE, J. Comput.
Appl. Math. 200 (2007), 86–115.

[Zha01] J.E. Zhang, A semi-analytical method for pricing and hedging con-
tinuously sampled arithmetic average rate options, J. Computational
Finance 5 (2001), no. 1, 59–79.

99





A. Matlab Source Code
Note: some comments are in written as pseudo latex expressions in order to handle
optimally the sub and super scripts.

A.1. Example script

% This is an example of how the Kurganov-Tadmor function scheme coded in
% the function 'kt_blackscholes2' could be used to solve the Black-Scholes
% equation numerically.
% The function 'kt_blackscholes2' receives several parameters while the
% function handle for the ODE solver needs only two parameters. For this
% purpose, we create a 'proxy' function called 'odefun'. See line 44.

params = struct( ...
'r', 0.05, ...
'd', 0.0, ...
'sigma', 0.15, ...
'K', 70, ...
'T', 1, ...
's_min', 0, ...
's_max', 100, ...
'theta', 1.5, ...
'N', 900 ...

);

% Discretized interval with boundaries included
s_all = linspace(params.s_min, params.s_max, params.N+2);

% Discretized interval without boundaries
s = s_all(2:params.N+1)';

% Step size
ds = abs(s(2) - s(1));

% Initial Condition (European call option)
v0 = max(s - params.K, 0);

% Boundary Conditions (function handles)
bc1 = @(t) 0;
bc2 = @(t) params.s_max*exp(-params.d*t) - params.K*exp(-params.r*t);

% Function handles for the Fluxes
F = @(x, v) (params.sigma^2 - params.r) .* x .* v;
dF = @(x, v) (params.sigma^2 - params.r) .* x;
Q = @(x, v, vx) 0.5 * params.sigma^2 .* x.^2 .* vx;
S = @(x, v) (params.sigma^2 - 2 * params.r) .* v;
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% Solving the ODE system
odefun = @(t, v) kt_blackscholes2(t, v, s, ds, params, F, dF, Q, S, bc1, bc2);
options = odeset('RelTol', 1e-6);

tic
[t, V] = ode15s(odefun, [0, params.T], v0, options);
toc

[sg, tg] = meshgrid(s, t);

surf(sg, tg, V, 'EdgeColor', 'none');
title('Surface for the price of the option from t=0 to t=T');
xlabel('s');
ylabel('t');
zlabel('V');

A.2. Main function

function v1 = kt_blackscholes2(t, v0, x, dx, params, F, dF, Q, S, bc1, bc2)
% The function kt_blackscholes2 implements the Kurganov-Tadmor scheme of
% second order for an European option.
% This function is feeded to the ODE solver as the right- hand side of the
% system to be solved.
%
% Parameters:
% t: current time (provided by the ODE solver)
% v0: values on the current time step (provided by the ODE solver)
% x: space discretization
% dx: step size
% params: structure which contains parameters for the option
% -params.r: risk-free interest rate
% -params.d: dividends
% -params.sigma: volatility
% -params.K: strike price
% -params.T: maturity
% -params.s_min: minimum value for the space discretization
% -params.s_max: maximum value for the space discretization
% -params.theta: value of theta for the minmod limiter
% -params.N: number of discretization points
% F: function implementing the convective flux. This function
% receives as parameters x and v0
% dF: derivative of the convective flux with respect to the solution.
% This function receives as parameters x, v0 and the derivative of
% v0 with respect to x
% Q: function implementing the diffusive flux. This function receives
% as parameters x and v0
% S: source function. This function receives as parameters x and v0
% bc1: function left boundary condition (modify parameters accordingly).
% bc2: function right boundary condition (modify parameters accordingly).

% Note: This function does not check for correctness of parameters (i.e.,
% that the function handles are passed correctly or that the params
% structure contains all the required elements) because it is called many
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% times by the ODE solver (some times thousands of calls) and efficiency is
% important.

% For clarity, a copy of the parameters is made. For more efficiency the
% 'params' structure could be used instead.
r = params.r;
d = params.d;
sigma = params.sigma;
K = params.K;
T = params.T;
s_min = params.s_min;
s_max = params.s_max;
theta = params.theta;
N = params.N;

% Derivative of v0 with respect to x obtained with the minmod limiter
v0x = derivative_minmod(v0, dx, theta, bc1(t), bc2(t));

% x_{i+1/2}
x_ph = x + dx/2;

% x_{i-1/2}
x_mh = x - dx/2;

% Convective Flux ---------------------------------------------------------
% Calculating v0^{-}_{j+1/2}
vmp = v0 + dx/2*v0x;

% Extrapolation of a value of the derivative we do not have access to.
v0x_bc2 = v0x(N-1) - (s_max+dx - x(N-1))/(s_max - (s_max-dx))*(v0x(N) - v0x(N-1));

% Calculating v0^{+}_{j+1/2}
vpp = zeros(N, 1);
vpp(1:N-1) = v0(2:N) - dx/2 * v0x(2:N);
vpp(N) = bc2(t) - dx/2 * v0x_bc2;

% Calculating a_{j+1/2}
ap = max(abs(dF(x_ph, vpp)), abs(dF(x_mh, vmp)));

% Calculating v0^{-}_{j-1/2}
v0x_bc1 = v0x(2) - (s_min-dx - (s_min+dx))/(s_min - (s_min+dx))*(v0x(1) - v0x(2));
vmm = zeros(N, 1);
vmm(1) = bc1(t) + dx/2 * v0x_bc1;
vmm(2:N) = v0(1:N-1) + dx/2 * v0x(1:N-1);

% Calculating v0^{+}_{j-1/2}
vpm = v0 - dx/2 * v0x;

% Calculating a_{j+1/2}
am = max(abs(dF(x_ph, vpm)), abs(dF(x_mh, vmm)));

% H_{j+1/2}
Hp = 0.5*(F(x_ph, vpp) + F(x_ph, vmp)) - 0.5*ap.*(vpp - vmp);

% H_{j-1/2}
Hm = 0.5*(F(x_mh, vpm) + F(x_mh, vmm)) - 0.5*am.*(vpm - vmm);

H = -1/dx * (Hp - Hm);

% Diffusive Flux ----------------------------------------------------------
% Forward-type numerical derivative
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v0x_fwd = derivative_fwd(v0, dx, bc1(t), bc2(t));

% Backwards-type numerical derivative
v0x_bwd = derivative_bwd(v0, dx, bc1(t), bc2(t));

% P_{j+1/2}
Pp = Q(x_ph, v0, v0x_fwd);

% P_{j-1/2}
Pm = Q(x_mh, v0, v0x_bwd);

P = 1/dx * (Pp - Pm);

% Output
v1 = H + P + S(x, v0);

A.3. Minmod Derivative

function vx = derivative_minmod(v, dx, theta, bc1, bc2)
% Obtains the derivative of v based on minmod limiter defined in the
% function minmod.m

N = length(v);

vx = zeros(N, 1);

% Derivative at j = 1
vx(1) = minmod( ...

theta*(v(1) - bc1)/dx, ...
(v(2) - bc1)/(2*dx), ...
theta*(v(2) - v(1))/dx);

% Derivative at j = N
vx(N) = minmod( ...

theta*(v(N) - v(N-1))/dx, ...
(bc2 - v(N-1))/(2*dx), ...
theta*(bc2 - v(N))/dx);

% Derivative for the rest of the grid points
for i = 2:N-1

vx(i) = minmod(theta*(v(i) - v(i-1))/dx, ...
(v(i+1) - v(i-1))/(2*dx), ...
theta*(v(i+1) - v(i))/dx);

end

A.4. Minmod Limiter

function d = minmod(a, b, c)
% Minmod limiter as defined in Kurganov-Tadmor [KT00]
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if a > 0 && b > 0 && c > 0
d = min([a, b, c]);

elseif a <0 && b < 0 && c <0
d = max([a, b, c]);

else
d = 0;

end

A.5. Backwards Derivative

function vx = derivative_bwd(v, dx, bc1, bc2)
% Derivative of a function of one variable, Backwards-type
% vx(i) = (v(i) - v(i-1)) / dx;
% The vector returned is the same size as the input. The first approximation
% to the derivative is achieved with forward-type numerical derivative.

vx = zeros(size(v));

vx(1) = (v(1) - bc1) / dx;

vx(2:end) = (v(2:end) - v(1:end-1)) / dx;

A.6. Forward Derivative

function vx = derivative_fwd(v, dx, bc1, bc2)
% Derivative of a function of one variable, forward-type
% vx(i) = (v(i+1) - v(i)) / dx;
% The vector returned is the same size as the input.

vx = zeros(size(v));

vx(1:end-1) = (v(2:end) - v(1:end-1)) / dx;

vx(end) = (bc2 - v(end)) / dx;

A.7. Code for MEX compiler
When reading this code, please keep in mind that Matlab relies on numerical
libraries written in Fortran, therefore the arrays are ordered column-wise. Also,
the two-dimensional matrices are represented as one-dimensional array with m×n
elements where m is the number of rows and n the number of columns.
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#include <math.h>
#include "mex.h"

/* Input Arguments */
#define U_IN prhs[0]
#define DX_IN prhs[1]
#define THETA_IN prhs[2]
#define BC1_IN prhs[3]
#define BC2_IN prhs[4]
#define DIM_IN prhs[5]

/* Output Arguments */
#define UX_OUT plhs[0]

/* Some Constants */
#define Y_DIM 1
#define X_DIM 2

#if !defined(MAX)
#define MAX(A, B) ((A) > (B) ? (A) : (B))
#endif

#if !defined(MIN)
#define MIN(A, B) ((A) < (B) ? (A) : (B))
#endif

static double minmod(double a, double b, double c);

static void minmod_derivative(
double ux[],
double u[],
double dx,
double theta,
double bc1[],
double bc2[],
int dim,
int m,
int n)

{

/* Indexers */
int i, j;

/* Auxiliary variables */
double a, b, c;

/* Auxiliar variable to represent current index */
int ci;

if (dim == X_DIM) {

/* Values at the boundaries */
for (i = 0; i < m; i++) {

/* left boundary */
a = theta*(u[i] - bc1[i]) / dx;
b = (u[i+m] - bc1[i]) / (2*dx);
c = theta*(u[i+m] - u[i]) / dx;

ux[i] = minmod(a, b, c);
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/* right boundary */
ci = i + m*n - m; /* Current desired position*/
a = theta*(u[ci] - u[ci-m]) / dx;
b = (bc2[i] - u[ci-m]) / (2*dx);
c = theta*(bc2[i] - u[ci]) / dx;
ux[ci] = minmod(a, b, c);

}

for (j = 1; j < (n-1); j++) {
for (i = 0; i < m; i++) {

/* Current desired position*/
ci = i + j*n;

a = theta*(u[ci] - u[ci - m]) / dx;
b = (u[ci+m] - u[ci-m]) / (2*dx);
c = theta*(u[ci+m] - u[ci]) / dx;;

ux[ci] = minmod(a, b, c);
}

}

} else if (dim == Y_DIM) {

/* no available BC in this direction, an approximation is achieved

* with appropriate available stencil */
for (j = 0; j < n; j++) {

ci = j*m;
ux[ci] = (u[ci+1] - u[ci]) / dx;
ux[ci+m-1] = (u[ci+m-1] - u[ci+m-2]) / dx;

}

for (j = 1; j < n; j++) {
for (i = 1; i < (m-1); i++) {

ci = i + j*n;

a = theta*(u[ci] - u[ci-1]) / dx;
b = (u[ci+1] - u[ci-1]) / (2*dx);
c = theta*(u[ci+1] - u[ci]) / dx;

ux[ci] = minmod(a, b, c);
}

}

} else {
mexWarnMsgTxt("Wrong Dimension\n");

}

return;

}

static double minmod(double a, double b, double c) {

double d;

if(a>0 && b>0 && c>0) {
d = MIN(MIN(a, b), c);

} else if (a<0 && b<0 && c<0) {
d = MAX(MAX(a, b), c);

} else {
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d = 0;
}

return d;
}

void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {

/* This variable will contain the derivative of the function */
double *ux;

/* input parameters */
double *u, *dx, *theta, *bc1, *bc2, *dim;

/* size of the matrix */
mwSize m, n;

/* Check for proper number of arguments */
if (nrhs != 6) {

mexErrMsgTxt("Function requires six input arguments.");
} else if (nlhs > 1) {

mexErrMsgTxt("Too many output arguments.");
}

/* Size of the matrix */
m = mxGetM(U_IN);
n = mxGetN(U_IN);

/* Create a matrix for the return argument */
UX_OUT = mxCreateDoubleMatrix(m, n, mxREAL);

/* Assign pointers to the various parameters */
ux = mxGetPr(UX_OUT);

u = (double*)mxGetPr(U_IN);
dx = (double*)mxGetPr(DX_IN);
theta = (double*)mxGetPr(THETA_IN);
bc1 = (double*)mxGetPr(BC1_IN);
bc2 = (double*)mxGetPr(BC2_IN);
dim = (double*)mxGetPr(DIM_IN);

/* Do the actual computations in a subroutine */
minmod_derivative(ux, u, *dx, *theta, bc1, bc2, (int)(*dim), m, n);
return;

}
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